Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis

De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).PubMed 

Google Scholar 
Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).PubMed 
CAS 

Google Scholar 
Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).CAS 

Google Scholar 
Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).
Google Scholar 
Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).CAS 

Google Scholar 
Wang, P. et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C–C coupling. Nat. Commun. 13, 3754 (2022).PubMed 
PubMed Central 
CAS 

Google Scholar 
Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012).PubMed 
CAS 

Google Scholar 
Pohlmann, A. et al. Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262 (2006).PubMed 

Google Scholar 
Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).CAS 

Google Scholar 
Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).CAS 

Google Scholar 
Crandall, B. S., Overa, S., Shin, H. & Jiao, F. Turning carbon dioxide into sustainable food and chemicals: how electrosynthesized acetate is paving the way for fermentation innovation. Acc. Chem. Res. 56, 1505–1516 (2023).PubMed 
CAS 

Google Scholar 
Jiang, K., Wang, H., Cai, W. B. & Wang, H. Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11, 6451–6458 (2017).PubMed 
CAS 

Google Scholar 
Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).CAS 

Google Scholar 
Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).PubMed 
PubMed Central 
CAS 

Google Scholar 
Zhang, P. et al. Chem–bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 8, 3363–3381 (2022).CAS 

Google Scholar 
Roh, H. et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour. Technol. 327, 124789 (2021).PubMed 
CAS 

Google Scholar 
Stöckl, M., Harms, S., Dinges, I., Dimitrova, S. & Holtmann, D. From CO2 to bioplastic—coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis. ChemSusChem 13, 4086–4093 (2020).PubMed 
PubMed Central 

Google Scholar 
Rowaihi et al. Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: investigation under stress-inducing conditions. PLoS One 13, e0196079 (2018).PubMed 
PubMed Central 

Google Scholar 
Dinges, I. et al. Coupling of CO2 electrolysis with parallel and semi-automated biopolymer synthesis—ex-cell and without downstream processing. ChemSusChem 17, e202301721 (2024).PubMed 
CAS 

Google Scholar 
Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).PubMed 
PubMed Central 
CAS 

Google Scholar 
Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2, 437–447 (2019).CAS 

Google Scholar 
Yang, Y. H. et al. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biotechnol. 87, 2037–2045 (2010).PubMed 
CAS 

Google Scholar 
York, G. M. et al. Ralstonia eutropha H16 encodes two and possibly three intracellular poly[d-(−)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185, 3788–3794 (2003).PubMed 
PubMed Central 
CAS 

Google Scholar 
Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).PubMed 
CAS 

Google Scholar 
Xia, Y. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 3864 (2021).
Google Scholar 
Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).PubMed 
CAS 

Google Scholar 
Zhang, B. A., Costentin, C. & Nocera, D. G. On the conversion efficiency of CO2 electroreduction on gold. Joule 3, 1565–1568 (2019).
Google Scholar 
Zheng, Y. et al. Seeded growth of gold–copper Janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products. Small 18, 1–8 (2022).
Google Scholar 
Behrens, P. Bonding in silver-oxygen compounds from Ag L3 XANES spectroscopy. Solid State Commun. 81, 235–239 (1992).CAS 

Google Scholar 
Miyamoto, T., Niimi, H., Kitajima, Y., Naito, T. & Asakura, K. Ag L3-edge X-ray absorption near-edge structure of 4d10 (Ag+) compounds: origin of the edge peak and its chemical relevance. J. Phys. Chem. A 114, 4093–4098 (2010).PubMed 
CAS 

Google Scholar 
Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).CAS 

Google Scholar 
Peng, H. J., Tang, M. T., Halldin Stenlid, J., Liu, X. & Abild-Pedersen, F. Trends in oxygenate/hydrocarbon selectivity for electrochemical CO(2) reduction to C2 products. Nat. Commun. 13, 1399 (2022).PubMed 
PubMed Central 
CAS 

Google Scholar 
Weaver, M. J. Potentials of zero charge for platinum(111)–aqueous interfaces: a combined assessment from in-situ and ultrahigh-vacuum measurements. Langmuir 14, 3932–3936 (1998).CAS 

Google Scholar 
Wang, J. & Yu, J. Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J. Ind. Microbiol. Biotechnol. 26, 121–126 (2001).PubMed 
CAS 

Google Scholar 
Feng, D. & Hicks, A. Environmental, human health, and CO2 payback estimation and comparison of enhanced weathering for carbon capture using wollastonite. J. Clean. Prod. 414, 137625 (2023).CAS 

Google Scholar 
Ghamkhar, R., Hartleb, C., Rabas, Z. & Hicks, A. Evaluation of environmental and economic implications of a cold-weather aquaponic food production system using life cycle assessment and economic analysis. J. Ind. Ecol. 26, 862–874 (2022).
Google Scholar 
Huang, S. et al. Co-doped Mn3O4 nanocubes via galvanic replacement reactions for photocatalytic reduction of CO2 with high turnover number. ChemSusChem 15, e202200704 (2022).PubMed 
CAS 

Google Scholar 
Ahn, H., Cho, S., Park, J. T. & Jang, H. Sequential galvanic replacement mediated Pd-doped hollow Ru–Te nanorods for enhanced hydrogen evolution reaction mass activity in alkaline media. Nanoscale 14, 14913–14920 (2022).PubMed 
CAS 

Google Scholar 
Cheng, H., Wang, C., Qin, D. & Xia, Y. Galvanic replacement synthesis of metal nanostructures: bridging the gap between chemical and electrochemical approaches. Acc. Chem. Res. 56, 900–909 (2023).PubMed 
PubMed Central 
CAS 

Google Scholar 
Rong, W. et al. Few-atom copper catalyst for the electrochemical reduction of CO to acetate: synergetic catalysis between neighboring cu atoms. CCS Chem. 5, 1176–1188 (2023).CAS 

Google Scholar 
Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).CAS 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).CAS 

Google Scholar 
Ernzerhof, M. & Perdew, J. P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 109, 3313–3320 (1998).CAS 

Google Scholar 
Al, E. & El, L. U. A climbing image nudged elastic band method for finding saddle points and minimum. Energy 12, 9–10 (1997).
Google Scholar 
Park, J. O. et al. Synergistic substrate cofeeding stimulates reductive metabolism. Nat Metab 1, 643–651 (2019).PubMed 
CAS 

Google Scholar 
Organic Carbon, Total (Hach, 2017); https://cdn.bfldr.com/7FYZVWYB/at/q9qp8j3zbh6pxfxb6wbr7n8f/DOC3165301335.pdfGutteridge, J. M. C. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex. Free Radic Biol Med 11, 401–406 (1991).PubMed 
CAS 

Google Scholar 
Han, Y., Zhu, J., Sun, P. & Wang, N. Synthesis of 5 mol% Ga3+-doped SnP2O7/KPO3 composite electrolyte for intermediate temperature fuel cells. Int. J. Electrochem. Sci. 15, 5255–5261 (2020).CAS 

Google Scholar 
Minh, D. P., Nzihou, A. & Sharrock, P. Sodium dihydrogen phosphate starting from sodium chloride and orthophosphoric acid via cation resin exchange. Phosphorus Sulfur Silicon Relat. Elem. 190, 1743–1748 (2015).CAS 

Google Scholar 

Hot Topics

Related Articles