Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries

Zhao, Z. et al. Development of flow battery technologies using the principles of sustainable chemistry. Chem. Soc. Rev. 52, 6031–6074 (2023).Article 
CAS 

Google Scholar 
Cameron, J. M. et al. Molecular redox species for next-generation batteries. Chem. Soc. Rev. 50, 5863–5883 (2021).Article 
CAS 

Google Scholar 
Zhang, C., Yuan, Z. & Li, X. Designing better flow batteries: an overview on fifty years’ research. ACS Energy Lett. 9, 3456–3473 (2024).Article 
CAS 

Google Scholar 
Huskinson, B. et al. A metal-free organic-inorganic aqueous flow battery. Nature 505, 195–198 (2014).Article 
CAS 

Google Scholar 
Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).Article 
CAS 

Google Scholar 
Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).Article 
CAS 

Google Scholar 
Feng, R. et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 372, 836–840 (2021).Article 
CAS 

Google Scholar 
Hollas, A. et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018).Article 
CAS 

Google Scholar 
Zhang, C. et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries. Adv. Mater. 31, 1901052 (2019).Article 

Google Scholar 
Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).Article 
CAS 

Google Scholar 
Janoschka, T., Martin, N., Hager, M. D. & Schubert, U. S. An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system. Angew. Chem. Int. Ed. 55, 14427–14430 (2016).Article 
CAS 

Google Scholar 
Liu, Y. et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861–1870 (2019).Article 
CAS 

Google Scholar 
Feng, R. et al. Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte. Joule 7, 1609–1622 (2023).Article 
CAS 

Google Scholar 
Li, X. et al. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873–881 (2021).Article 
CAS 

Google Scholar 
Luo, J., Hu, B., Hu, M., Zhao, Y. & Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019).Article 
CAS 

Google Scholar 
Kwabi, D. G., Ji, Y. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020).Article 
CAS 

Google Scholar 
Singh, V., Kim, S., Kang, J. & Byon, H. R. Aqueous organic redox flow batteries. Nano Res. 12, 1988–2001 (2019).Article 
CAS 

Google Scholar 
Liu, W. Q. et al. A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery. Sci. Bull. 66, 457–463 (2021).Article 
CAS 

Google Scholar 
Wedege, K., Dražević, E., Konya, D. & Bentien, A. Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility. Sci. Rep. 6, 39101 (2016).Article 
CAS 

Google Scholar 
Kwabi, D. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894–1906 (2018).Article 
CAS 

Google Scholar 
Wang, C. et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries. ACS Energy Lett. 5, 411–417 (2020).Article 
CAS 

Google Scholar 
Pang, S., Wang, X., Wang, P. & Ji, Y. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH. Angew. Chem. Int. Ed. 60, 5289–5298 (2021).Article 
CAS 

Google Scholar 
Zhang, C. & Li, X. Perspective on organic flow batteries for large-scale energy storage. Curr. Opin. Electrochem. 30, 100836 (2021).Article 
CAS 

Google Scholar 
Carrington, M. E. et al. Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature 623, 949–955 (2023).Article 
CAS 

Google Scholar 
Clark, C. D., Debad, J. D., Yonemoto, E. H., Mallouk, T. E. & Bard, A. J. Effect of oxygen on linked Ru(bpy)32+−Viologen species and methylviologen: a reinterpretation of the electrogenerated chemiluminescence. J. Am. Chem. Soc. 119, 10525–10531 (1997).Article 
CAS 

Google Scholar 
Levey, G. T. & Ebbesen, W. Methyl viologen radical reactions with several oxidizing agents. J. Phys. Chem. 87, 829–832 (1983).Article 
CAS 

Google Scholar 
Zotti, G., Schiavon, G., Zecchin, S. & Favretto, D. Dioxygen-decomposition of ferrocenium molecules in acetonitrile: the nature of the electrode-fouling films during ferrocene electrochemistry. J. Electroanal. Chem. 456, 217–221 (1998).Article 
CAS 

Google Scholar 
Zhao, E. W. et al. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 143, 1885–1895 (2021).Article 
CAS 

Google Scholar 
Symons, P. Quinones for redox flow batteries. Curr. Opin. Electrochem. 29, 100759 (2021).Article 
CAS 

Google Scholar 
Lu, T. & Chen, Q. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem.–Methods 1, 231–239 (2021).Article 
CAS 

Google Scholar 
Dai, Q. et al. High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy Environ. Sci. 15, 1594–1600 (2022).Article 
CAS 

Google Scholar 
Frisch, M. J. et al. Gaussian 16 Rev. A.03 (Gaussian, Inc., 2016). https://gaussian.com/citation/Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).Article 
CAS 

Google Scholar 
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 113, 6378–6396 (2009).Article 
CAS 

Google Scholar 
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).Article 
CAS 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles