A metalloenzyme platform for catalytic asymmetric radical dearomatization

von Ragué Schleyer, P. Introduction: aromaticity. Chem. Rev. 101, 1115–1118 (2001).Article 

Google Scholar 
Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep. 36, 1589–1605 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).Article 

Google Scholar 
Zheng, C. & You, S.-L. Advances in catalytic asymmetric dearomatization. ACS Cent. Sci. 7, 432–444 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Roche, S. P. & Porco, J. A. Jr. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).Wang, Y., Zhang, W.-Y., Yu, Z.-L., Zheng, C. & You, S.-L. SmI2-mediated enantioselective reductive dearomatization of non-activated arenes. Nat. Synth. 1, 401–406 (2022).Article 

Google Scholar 
Zhang, W.-Y., Wang, H.-C., Wang, Y., Zheng, C. & You, S.-L. Enantioselective dearomatization of indoles via SmI2-mediated intermolecular reductive coupling with ketones. J. Am. Chem. Soc. 145, 10314–10321 (2023).Article 
CAS 
PubMed 

Google Scholar 
Proctor, R. S. J., Colgan, A. C. & Phipps, R. J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 12, 990–1004 (2020).Article 
PubMed 

Google Scholar 
Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).Article 
CAS 
PubMed 

Google Scholar 
Bloom, J. D. & Arnold, F. H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA 106, 9995–10000 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. 50, 138–174 (2011).Article 
CAS 

Google Scholar 
Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).Article 
CAS 
PubMed 

Google Scholar 
Gibson, D. T., Koch, J. R. & Kallio, R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymic formation of catechol from benzene. Biochemistry 7, 2653–2662 (1968).Article 
CAS 
PubMed 

Google Scholar 
Boyd, D. R. & Bugg, T. D. H. Arene cis-dihydrodiol formation: from biology to application. Org. Biomol. Chem. 4, 181–192 (2006).Article 
CAS 
PubMed 

Google Scholar 
Johnson, R. A. Microbial arene oxidations. In Organic Reactions (ed. Overman, L. E.) 117–264 (John Wiley & Sons, 2004).Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jacoby, C. et al. Channeling C1 metabolism toward S-adenosylmethionine-dependent conversion of estrogens to androgens in estrogen-degrading bacteria. mBio 11, https://doi.org/10.1128/mbio.01259-20 (2020).Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, Y. et al. Engineered P450 atom-transfer radical cyclases are bifunctional biocatalysts: reaction mechanism and origin of enantioselectivity. J. Am. Chem. Soc. 144, 13344–13355 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation. Science 376, 869–874 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).Article 
CAS 
PubMed 

Google Scholar 
Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Black, M. J. et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ‘ene’-reductases. Nat. Chem. 12, 71–75 (2020).Article 
PubMed 

Google Scholar 
Clayman, P. D. & Hyster, T. K. Photoenzymatic generation of unstabilized alkyl radicals: an asymmetric reductive cyclization. J. Am. Chem. Soc. 142, 15673–15677 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gao, X., Turek-Herman, J. R., Choi, Y. J., Cohen, R. D. & Hyster, T. K. Photoenzymatic synthesis of α-tertiary amines by engineered flavin-dependent “ene”-reductases. J. Am. Chem. Soc. 143, 19643–19647 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nicholls, B. T. et al. Engineering a non-natural photoenzyme for improved photon efficiency. Angew. Chem. Int. Ed. 61, e202113842 (2022).Article 
CAS 

Google Scholar 
Fu, H. et al. An asymmetric sp3–sp3 cross-electrophile coupling using ‘ene’-reductases. Nature 610, 302–307 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fu, H., Qiao, T., Carceller, J. M., MacMillan, S. N. & Hyster, T. K. Asymmetric C-alkylation of nitroalkanes via enzymatic photoredox catalysis. J. Am. Chem. Soc. 145, 787–793 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Page, C. G. et al. Regioselective radical alkylation of arenes using evolved photoenzymes. J. Am. Chem. Soc. 145, 11866–11874 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).Article 
CAS 
PubMed 

Google Scholar 
Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).Article 
CAS 
PubMed 

Google Scholar 
Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).Article 
CAS 

Google Scholar 
Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Süsse, L. & Stoltz, B. M. Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts. Chem. Rev. 121, 4084–4099 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Phillips, I. R., Shephard, E. A. & Ortiz de Montellano, P. R. Cytochrome P450 Protocols (Humana, 2013).Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mukaiyama, T., Ogata, K., Sato, I. & Hayashi, Y. Asymmetric organocatalyzed Michael addition of nitromethane to a 2-oxoindoline-3-ylidene acetaldehyde and the three one-pot sequential synthesis of (−)-horsfiline and (−)-coerulescine. Chem. Eur. J. 20, 13583–13588 (2014).Article 
CAS 
PubMed 

Google Scholar 
Díaz-Marrero, A. R. et al. Carijodienone from the octocoral Carijoa multiflora. A spiropregnane-based steroid. J. Nat. Prod. 74, 292–295 (2011).Article 
PubMed 

Google Scholar 
Bandini, M. & Eichholzer, A. Catalytic functionalization of indoles in a new dimension. Angew. Chem. Int. Ed. 48, 9608–9644 (2009).Article 
CAS 

Google Scholar 
Brandenberg, O. F. et al. Stereoselective enzymatic synthesis of heteroatom-substituted cyclopropanes. ACS Catal. 8, 2629–2634 (2018).Article 
CAS 

Google Scholar 
McIntosh, J. A. et al. Enantioselective intramolecular C—H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).Article 
CAS 

Google Scholar 
Højgaard, C., Sørensen, H. V., Pedersen, J. S., Winther, J. R. & Otzen, D. E. Can a charged surfactant unfold an uncharged protein? Biophys. J. 115, 2081–2086 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Cortes-Clerget, M. et al. MC-1. A “designer” surfactant engineered for peptide synthesis in water at room temperature. Green Chem. 21, 2610–2614 (2019).Article 
CAS 

Google Scholar 
Lipshutz, B. H. et al. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem. 76, 4379–4391 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Klumphu, P. & Lipshutz, B. H. “Nok”: a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature. J. Org. Chem. 79, 888–900 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Noey, E. L. et al. Origins of stereoselectivity in evolved ketoreductases. Proc. Natl Acad. Sci. USA 112, E7065–E7072 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, R.-Q., Yang, P., Tu, H.-F., Wang, S.-G. & You, S.-L. Palladium(0)-catalyzed intermolecular arylative dearomatization of β-naphthols. Angew. Chem. Int. Ed. 55, 15137–15141 (2016).Article 
CAS 

Google Scholar 
Hu, J. et al. Pd-catalyzed dearomative asymmetric allylic alkylation of naphthols with alkoxyallenes. J. Org. Chem. 85, 7896–7904 (2020).Article 
CAS 
PubMed 

Google Scholar 
Mohamed, M. A., Yamada, K. & Tomioka, K. Accessing the amide functionality by the mild and low-cost oxidation of imine. Tetrahedron Lett. 50, 3436–3438 (2009).Article 
CAS 

Google Scholar 
Wang, G., Lu, R., He, C. & Liu, L. Kinetic resolution of indolines by asymmetric hydroxylamine formation. Nat. Commun. 12, 2512 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles