Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system

Xu, H., Ma, Y., Chen, J., Zhang, W.-X. & Yang, J. Electrocatalytic reduction of nitrate—a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 51, 2710–2758 (2022).Article 
CAS 

Google Scholar 
Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).Article 
CAS 

Google Scholar 
Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).Article 

Google Scholar 
Lim, J., Fernández, C. A., Lee, S. W. & Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 6, 3676–3685 (2021).Article 
CAS 

Google Scholar 
Coates, J. D. et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411, 1039–1043 (2001).Article 
CAS 

Google Scholar 
Li, R. et al. Large virtual transboundary hazardous waste flows: the case of China. Environ. Sci. Technol. 57, 8161–8173 (2023).Article 
CAS 

Google Scholar 
Gu, B., Ge, Y., Chang, S. X., Luo, W. & Chang, J. Nitrate in groundwater of China: sources and driving forces. Glob. Environ. Change 23, 1112–1121 (2013).Article 

Google Scholar 
Guo, Y., Stroka, J. R., Kandemir, B., Dickerson, C. E. & Bren, K. L. A cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium. J. Am. Chem. Soc. 140, 16888–16892 (2018).Article 
CAS 

Google Scholar 
Chen, P. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl Acad. Sci. USA 116, 6635–6640 (2019).Article 
CAS 

Google Scholar 
Wang, Y., Wang, C., Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).Article 
CAS 

Google Scholar 
Sun, Y., Garg, S., Zhang, C., Xie, J. & Waite, T. D. Approaches to enhancing cathodic nickel recovery from Ni-EDTA containing synthetic wastewaters. ACS ES T Water 3, 2415–2426 (2023).Article 
CAS 

Google Scholar 
Park, D. et al. Metal recovery from electroplating wastewater using acidophilic iron oxidizing bacteria: pilot-scale feasibility test. Ind. Eng. Chem. Res. 44, 1854–1859 (2005).Article 
CAS 

Google Scholar 
Casademont, C., Pourcelly, G. & Bazinet, L. Bilayered self-oriented membrane fouling and impact of magnesium on CaCO3 formation during consecutive electrodialysis treatments. Langmuir 26, 854–859 (2010).Article 
CAS 

Google Scholar 
Yan, H., Xu, C., Li, W., Wang, Y. & Xu, T. Electrodialysis to concentrate waste ionic liquids: optimization of operating parameters. Ind. Eng. Chem. Res. 55, 2144–2152 (2016).Article 
CAS 

Google Scholar 
Liu, R.-T. et al. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).Article 
CAS 

Google Scholar 
Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).Article 
CAS 

Google Scholar 
Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).Article 
CAS 

Google Scholar 
Wang, X. et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022).Article 
CAS 

Google Scholar 
Cioncoloni, G. et al. Proton-coupled electron transfer enhances the electrocatalytic reduction of nitrite to NO in a bioinspired copper complex. ACS Catal. 8, 5070–5084 (2018).Article 
CAS 

Google Scholar 
Sen, F. G., Alpas, A. T., van Duin, A. C. T. & Qi, Y. Oxidation-assisted ductility of aluminium nanowires. Nat. Commun. 5, 3959 (2014).Article 
CAS 

Google Scholar 
Wu, Z.-Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022).Article 
CAS 

Google Scholar 
Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).Article 
CAS 

Google Scholar 
Daiyan, R. et al. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 14, 3588–3598 (2021).Article 
CAS 

Google Scholar 
Liu, B. et al. Metal 3D nanoprinting with coupled fields. Nat. Commun. 14, 4920 (2023).Article 
CAS 

Google Scholar 
Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).Article 
CAS 

Google Scholar 
Panwisawas, C., Tang, Y. T. & Reed, R. C. Metal 3D printing as a disruptive technology for superalloys. Nat. Commun. 11, 2327 (2020).Article 
CAS 

Google Scholar 
Ge, J. et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 12, 434–440 (2017).Article 
CAS 

Google Scholar 
Okulov, I. V. et al. Flash joule heating for ductilization of metallic glasses. Nat. Commun. 6, 7932 (2015).Article 
CAS 

Google Scholar 
Qiang, G. et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synthesis 2, 624–634 (2023).Article 

Google Scholar 
Xu, B., Chen, Z., Zhang, G. & Wang, Y. On-demand atomic hydrogen provision by exposing electron-rich cobalt sites in an open-framework structure toward superior electrocatalytic nitrate conversion to dinitrogen. Environ. Sci. Technol. 56, 614–623 (2022).Article 
CAS 

Google Scholar 
Fang, J.-Y. et al. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022).Article 
CAS 

Google Scholar 
Ataka, K.-i, Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).Article 
CAS 

Google Scholar 
Bu, Y. et al. Electrical pulse-driven periodic self-repair of Cu–Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. 62, e202217337 (2023).Article 
CAS 

Google Scholar 
Deng, Y., Handoko, A. D., Du, Y., Xi, S. & Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).Article 
CAS 

Google Scholar 
Faid, A. Y., Barnett, A. O., Seland, F. & Sunde, S. Ni/NiO nanosheets for alkaline hydrogen evolution reaction: in situ electrochemical–Raman study. Electrochim. Acta 361, 137040 (2020).Article 
CAS 

Google Scholar 
Kang, X. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3607 (2023).Article 
CAS 

Google Scholar 
Peng, J. et al. Surface coordination layer passivates oxidation of copper. Nature 586, 390–394 (2020).Article 
CAS 

Google Scholar 
Chuang, Y.-H. et al. Critical role of trichloramine interaction with dichloramine for N-nitrosamine formation during breakpoint chlorination. Environ. Sci. Technol. 57, 15232–15242 (2023).Article 
CAS 

Google Scholar 
Pang, R., Miseki, Y., Okunaka, S. & Sayama, K. Photocatalytic production of hypochlorous acid over Pt/WO3 under simulated solar light. ACS Sustain. Chem. Eng. 8, 8629–8637 (2020).Article 
CAS 

Google Scholar 
Cross, J. H. Reevaluation of the employment of Fick’s law for diffusion dosimeters. Environ. Sci. Technol. 37, 1633–1638 (2003).Article 
CAS 

Google Scholar 
Peng, W., Xiao, L., Huang, B., Zhuang, L. & Lu, J. Inhibition effect of surface oxygenated species on ammonia oxidation reaction. J. Phys. Chem. C 115, 23050–23056 (2011).Article 
CAS 

Google Scholar 
Kumar, A., Phillips, K. R., Thiel, G. P., Schröder, U. & Lienhard, J. H. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat. Catal. 2, 106–113 (2019).Article 
CAS 

Google Scholar 
Zhang, C. et al. Capillary effect-enabled water electrolysis for enhanced electrochemical ozone production by using bulk porous electrode. J. Am. Chem. Soc. 139, 16620–16629 (2017).Article 
CAS 

Google Scholar 
Baker, D. V., Bao, C. & Kim, W. S. Highly conductive 3D printable materials for 3D structural electronics. ACS Appl. Electron. Mater. 3, 2423–2433 (2021).Article 
CAS 

Google Scholar 
Yu, Z. J., Carpenter, J. V. & Holman, Z. C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat. Energy 3, 747–753 (2018).Article 
CAS 

Google Scholar 
Wang, Y., Levis, J. W. & Barlaz, M. A. Life-cycle assessment of a regulatory compliant US municipal solid waste landfill. Environ. Sci. Technol. 55, 13583–13592 (2021).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Designing magnesium phosphate cement for stabilization/solidification of Zn-rich electroplating sludge. Environ. Sci. Technol. 56, 9398–9407 (2022).Article 
CAS 

Google Scholar 
Yuan, W. et al. Understanding of adopting flat-top laser in laser powder bed fusion processed Inconel 718 alloy: simulation of single-track scanning and experiment. J. Mater. Res. Technol. 16, 1388–1401 (2022).Article 
CAS 

Google Scholar 
Yuan, W., Chen, H., Cheng, T. & Wei, Q. Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater. Des. 189, 108542 (2020).Article 

Google Scholar 
Zhang, G. et al. Source data for ‘Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system’. figshare https://doi.org/10.6084/m9.figshare.26134027 (2024).

Hot Topics

Related Articles