Multi-objective optimization of custom implant abutment design for enhanced bone remodeling in single-crown implants using 3D finite element analysis

Goiato, M. C., dos Santos, D. M., Santiago, J. F., Moreno, A. & Pellizzer, E. P. Longevity of dental implants in type IV bone: A systematic review. Int. J. Oral Maxillofac. Surg. 43, 1108–1116. https://doi.org/10.1016/j.ijom.2014.02.016 (2014).Article 
CAS 
PubMed 

Google Scholar 
Berglundh, T., Persson, L. & Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 29(Suppl 3), 197–212. https://doi.org/10.1034/j.1600-051x.29.s3.12.x (2002).Article 
PubMed 

Google Scholar 
Baqain, Z. H., Moqbel, W. Y. & Sawair, F. A. Early dental implant failure: Risk factors. Br. J. Oral Maxillofac. Surg. 50, 239–243. https://doi.org/10.1016/j.bjoms.2011.04.074 (2012).Article 
PubMed 

Google Scholar 
Manor, Y., Oubaid, S., Mardinger, O., Chaushu, G. & Nissan, J. Characteristics of early versus late implant failure: A retrospective study. J. Oral Maxillofac. Surg. 67, 2649–2652. https://doi.org/10.1016/j.joms.2009.07.050 (2009).Article 
PubMed 

Google Scholar 
Fu, J. H., Hsu, Y. T. & Wang, H. L. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur. J. Oral Implantol. 5(Suppl), S91–S103 (2012).PubMed 

Google Scholar 
Cochran, D. & Froum, S. Academy report: Peri-implant mucositis and peri-implantitis: A current understanding of their diagnoses and clinical implications. J. Periodontol. 84, 436–443. https://doi.org/10.1902/jop.2013.134001 (2013).Article 

Google Scholar 
Rungsiyakull, C., Rungsiyakull, P., Li, Q., Li, W. & Swain, M. Effects of occlusal inclination and loading on mandibular bone remodeling: A finite element study. Int. J. Oral Maxillofac. Implants 26, 527–537 (2011).PubMed 

Google Scholar 
Rajaeirad, M. et al. Evaluating the effect of functionally graded materials on bone remodeling around dental implants. Dent. Mater. 40, 858–868. https://doi.org/10.1016/j.dental.2024.04.002 (2024).Article 
CAS 
PubMed 

Google Scholar 
Rungsiyakull, P., Rungsiyakull, C., Monstaporn, M., Sae-lee, D. & Elsaka, S. Effects of bone type and occlusal loading pattern on bone remodeling in implant-supported single crown: A finite element study. J. Prosthodont. 33, 288. https://doi.org/10.1111/jopr.13679 (2023).Article 
PubMed 

Google Scholar 
Stanford, C. M. & Brand, R. A. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J. Prosthet. Dent. 81, 553–561. https://doi.org/10.1016/s0022-3913(99)70209-x (1999).Article 
CAS 
PubMed 

Google Scholar 
Poovarodom, P. et al. Effect of implant placement depth on bone remodeling on implant-supported single zirconia abutment crown: A 3D finite element study. J. Prosthodont. Res. 67, 278–287. https://doi.org/10.2186/jpr.JPR_D_22_00054 (2023).Article 
PubMed 

Google Scholar 
Di Fiore, A. et al. Peri-implant bone loss and overload: A systematic review focusing on occlusal analysis through digital and analogic methods. J. Clin. Med. 11, 4812 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Canullo, L., Pesce, P., Patini, R., Antonacci, D. & Tommasato, G. What are the effects of different abutment morphologies on peri-implant hard and soft tissue behavior? A systematic review and meta-analysis. Int. J. Prosthodont. 33, 297–306. https://doi.org/10.11607/ijp.6577 (2020).Article 
PubMed 

Google Scholar 
Ouldyerou, A. et al. Functionally graded ceramics (FGC) dental abutment with implant-supported cantilever crown: Finite element analysis. Compos. Commun. 38, 101514. https://doi.org/10.1016/j.coco.2023.101514 (2023).Article 

Google Scholar 
Kapos, T. & Evans, C. CAD/CAM technology for implant abutments, crowns, and superstructures. Int. J. Oral Maxillofac. Implants 29(Suppl), 117–136. https://doi.org/10.11607/jomi.2014suppl.g2.3 (2014).Article 
PubMed 

Google Scholar 
Ferrari, M., Vichi, A. & Zarone, F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 31, e63–e76. https://doi.org/10.1016/j.dental.2014.11.015 (2015).Article 
CAS 
PubMed 

Google Scholar 
Holst, S., Blatz, M. B., Hegenbarth, E., Wichmann, M. & Eitner, S. Prosthodontic considerations for predictable single-implant esthetics in the anterior maxilla. J. Oral Maxillofac. Surg. 63, 89–96. https://doi.org/10.1016/j.joms.2005.05.161 (2005).Article 
PubMed 

Google Scholar 
Nothdurft, F. P. et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: A comparison of materials and surface topographies. Clin. Implant Dent. Relat. Res. 17, 1237–1249. https://doi.org/10.1111/cid.12253 (2015).Article 
PubMed 

Google Scholar 
Brodbeck, U. The ZiReal Post: A new ceramic implant abutment. J. Esthet. Restorat. Dent. 15, 10–23 (2003).Article 

Google Scholar 
Long, L., Alqarni, H. & Masri, R. Influence of implant abutment fabrication method on clinical outcomes: A systematic review. Eur. J. Oral Implantol. 10(Suppl 1), 67–77 (2017).PubMed 

Google Scholar 
Ouldyerou, A. et al. Biomechanical analysis of printable functionally graded material (FGM) dental implants for different bone densities. Comput. Biol. Med. 150, 106111. https://doi.org/10.1016/j.compbiomed.2022.106111 (2022).Article 
CAS 
PubMed 

Google Scholar 
Barros, R. R., Novaes, A. B. Jr., Muglia, V. A., Iezzi, G. & Piattelli, A. Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: A histomorphometric study in dogs. Clin. Oral Implants Res. 21, 371–378. https://doi.org/10.1111/j.1600-0501.2009.01860.x (2010).Article 
PubMed 

Google Scholar 
Huang, B. et al. Influence of placement depth on bone remodeling around tapered internal connection implant: A clinical and radiographic study in dogs. J. Periodontol. 83, 1164–1171. https://doi.org/10.1902/jop.2012.110617 (2012).Article 
PubMed 

Google Scholar 
Canullo, L., Pace, F., Coelho, P., Sciubba, E. & Vozza, I. The influence of platform switching on the biomechanical aspects of the implant-abutment system. A three dimensional finite element study. Med. Oral Patol. Oral y Cirugia Bucal 16, e852–e856. https://doi.org/10.4317/medoral.17243 (2011).Article 

Google Scholar 
Fetner, M. et al. The effects of subcrestal implant placement on crestal bone levels and bone-to-abutment contact: A microcomputed tomographic and histologic study in dogs. Int. J. Oral Maxillofac. Implants 30, 1068–1075. https://doi.org/10.11607/jomi.4043 (2015).Article 
PubMed 

Google Scholar 
Oskarsson, M., Otsuki, M., Welander, M. & Abrahamsson, I. Peri-implant tissue healing at implants with different designs and placement protocols: An experimental study in dogs. Clin. Oral Implants Res. 29, 873–880. https://doi.org/10.1111/clr.13339 (2018).Article 
PubMed 

Google Scholar 
Froum, S. et al. Epicrestal and subcrestal placement of platform-switched implants: 18 month-result of a randomized, controlled, split-mouth, prospective clinical trial. Clin. Oral Implants Res. 29, 129. https://doi.org/10.1111/clr.13129 (2018).Article 

Google Scholar 
Finelle, G. et al. Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: Micro-CT analysis. Clin. Oral Implants Res. 26, 328. https://doi.org/10.1111/clr.12328 (2014).Article 

Google Scholar 
Souza, A. B., Alshihri, A., Kämmerer, P. W., Araújo, M. G. & Gallucci, G. O. Histological and micro-CT analysis of peri-implant soft and hard tissue healing on implants with different healing abutments configurations. Clin. Oral Implants Res. 29, 1007–1015. https://doi.org/10.1111/clr.13367 (2018).Article 
PubMed 

Google Scholar 
Cocchetto, R. & Canullo, L. The, “hybrid abutment”: A new design for implant cemented restorations in the esthetic zones. Int. J. Esthet. Dent. 10, 186–208 (2015).PubMed 

Google Scholar 
Hermann, F., Lerner, H. & Palti, A. Factors influencing the preservation of the periimplant marginal bone. Implant Dent. 16, 165–175. https://doi.org/10.1097/ID.0b013e318065aa81 (2007).Article 
PubMed 

Google Scholar 
Degidi, M. et al. Equicrestal and subcrestal dental implants: A histologic and histomorphometric evaluation of nine retrieved human implants. J. Periodontol. 82, 708–715. https://doi.org/10.1902/jop.2010.100450 (2011).Article 
PubMed 

Google Scholar 
Huang, C. C., Lan, T. H., Lee, H. E. & Wang, C. H. The biomechanical analysis of relative position between implant and alveolar bone: Finite element method. J. Periodontol. 82, 489–496. https://doi.org/10.1902/jop.2010.100388 (2011).Article 
PubMed 

Google Scholar 
Chou, H. Y., Müftü, S. & Bozkaya, D. Combined effects of implant insertion depth and alveolar bone quality on periimplant bone strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. J. Prosthet. Dent. 104, 293–300. https://doi.org/10.1016/s0022-3913(10)60142-4 (2010).Article 
PubMed 

Google Scholar 
Palaska, I., Tsaousoglou, P., Vouros, I., Konstantinidis, A. & Menexes, G. Influence of placement depth and abutment connection pattern on bone remodeling around 1-stage implants: A prospective randomized controlled clinical trial. Clin. Oral Implants Res. 27, e47–e56. https://doi.org/10.1111/clr.12527 (2016).Article 
PubMed 

Google Scholar 
Hämmerle, C. H., Brägger, U., Bürgin, W. & Lang, N. P. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin. Oral Implants Res. 7, 111–119. https://doi.org/10.1034/j.1600-0501.1996.070204.x (1996).Article 
PubMed 

Google Scholar 
Cesaretti, G. et al. Sub-crestal positioning of implants results in higher bony crest resorption: An experimental study in dogs. Clin. Oral Implants Res. 26, 1355–1360. https://doi.org/10.1111/clr.12467 (2015).Article 
PubMed 

Google Scholar 
Stein, A. E., McGlmphy, E. A., Johnston, W. M. & Larsen, P. E. Effects of implant design and surface roughness on crestal bone and soft tissue levels in the esthetic zone. Int. J. Oral Maxillofac. Implants 24, 910–919 (2009).PubMed 

Google Scholar 
Su, H., Gonzalez-Martin, O., Weisgold, A. & Lee, E. Considerations of implant abutment and crown contour: Critical contour and subcritical contour. Int. J. Periodont. Restorat. Dent. 30, 335–343 (2010).
Google Scholar 
Poovarodom, P., et al. Effect of customized abutment taper configuration on bone remodeling and peri-implant tissue around implant-supported single crown: A 3D nonlinear finite element study. J Prosthodont. 1, 1–9. https://doi.org/10.1111/jopr.13776 (2023).Chokaree, P., Poovarodom, P., Chaijareenont, P., Yavirach, A. & Rungsiyakull, P. Biomaterials and clinical applications of customized healing abutment: A narrative review. J. Funct. Biomater. 13, 291 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Koutouzis, T., Adeinat, B. & Ali, A. The influence of abutment macro-design on clinical and radiographic peri-implant tissue changes for guided, placed, and restored implants: A 1-year randomized controlled trial. Clin. Oral Implants Res. 30, 882–891. https://doi.org/10.1111/clr.13493 (2019).Article 
PubMed 

Google Scholar 
Galindo-Moreno, P. et al. Abutment height influences the effect of platform switching on peri-implant marginal bone loss. Clin. Oral Implants Res. 27, 167–173. https://doi.org/10.1111/clr.12554 (2016).Article 
PubMed 

Google Scholar 
Nóvoa, L. et al. Influence of abutment height on maintenance of peri-implant crestal bone at bone-level implants: A 3-year follow-up study. Int. J. Periodont. Restorat. Dent. 37, 721–727. https://doi.org/10.11607/prd.2762 (2017).Article 

Google Scholar 
Galindo-Moreno, P. et al. Marginal bone loss around implants placed in maxillary native bone or grafted sinuses: A retrospective cohort study. Clin. Oral Implants Res. 25, 378–384. https://doi.org/10.1111/clr.12122 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vervaeke, S., Dierens, M., Besseler, J. & De Bruyn, H. The influence of initial soft tissue thickness on peri-implant bone remodeling. Clin. Implant Dent. Relat. Res. 16, 238–247. https://doi.org/10.1111/j.1708-8208.2012.00474.x (2014).Article 
PubMed 

Google Scholar 
Collaert, B. & De Bruyn, H. Early loading of four or five Astra Tech fixtures with a fixed cross-arch restoration in the mandible. Clin. Implant Dent. Relat. Res. 4, 133–135. https://doi.org/10.1111/j.1708-8208.2002.tb00163.x (2002).Article 
PubMed 

Google Scholar 
Galindo-Moreno, P. et al. Prosthetic abutment height is a key factor in peri-implant marginal bone loss. J. Dent. Res. 93, 80s–85s. https://doi.org/10.1177/0022034513519800 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Anusavice, K. J., Kakar, K. & Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin. Oral Implants Res. 18, 218–231. https://doi.org/10.1111/j.1600-0501.2007.01460.x (2007).Article 
PubMed 

Google Scholar 
Kim, J. S. et al. In vitro assessment of three types of zirconia implant abutments under static load. J. Prosthet. Dent. 109, 255–263. https://doi.org/10.1016/S0022-3913(13)60054-2 (2013).Article 
CAS 
PubMed 

Google Scholar 
Gehrke, P., Johannson, D., Fischer, C., Stawarczyk, B. & Beuer, F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int. J. Oral Maxillofac. Implants 30, 546–554. https://doi.org/10.11607/jomi.3942 (2015).Article 
PubMed 

Google Scholar 
Poovarodom, P. et al. Effect of gingival height of a titanium base on the biomechanical behavior of 2-piece custom implant abutments: A 3-dimensional nonlinear finite element study. J. Prosthet. Dent. https://doi.org/10.1016/j.prosdent.2023.06.031 (2023).Article 
PubMed 

Google Scholar 
Rungsiyakull, C. et al. Bone’s responses to different designs of implant-supported fixed partial dentures. Biomech. Model Mechanobiol. 14, 403–411. https://doi.org/10.1007/s10237-014-0612-6 (2015).Article 
PubMed 

Google Scholar 
Weinstein, A. M., Klawitter, J. J., Anand, S. C. & Schuessler, R. Stress analysis of porous rooted dental implants. J. Dent. Res. 55, 772–777 (1976).Article 
CAS 
PubMed 

Google Scholar 
Pierrisnard, L., Hure, G., Barquins, M. & Chappard, D. Two dental implants designed for immediate loading: A finite element analysis. Int. J. Oral Maxillofac. Implants 17, 353–362 (2002).PubMed 

Google Scholar 
Kohal, R. J., Papavasiliou, G., Kamposiora, P., Tripodakis, A. & Strub, J. R. Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. Int. J. Prosthodont. 15, 189–194 (2002).PubMed 

Google Scholar 
Rungsiyakull, C., Li, Q., Sun, G., Li, W. & Swain, M. V. Surface morphology optimization for osseointegration of coated implants. Biomaterials 31, 7196–7204. https://doi.org/10.1016/j.biomaterials.2010.05.077 (2010).Article 
CAS 
PubMed 

Google Scholar 
Lin, D., Li, Q., Li, W., Duckmanton, N. & Swain, M. Mandibular bone remodeling induced by dental implant. J. Biomech. 43, 287–293. https://doi.org/10.1016/j.jbiomech.2009.08.024 (2010).Article 
PubMed 

Google Scholar 
Cowin, S. C. & Van Buskirk, W. C. Internal bone remodeling induced by a medullary pin. J. Biomech. 11, 269–275. https://doi.org/10.1016/0021-9290(78)90053-2 (1978).Article 
CAS 
PubMed 

Google Scholar 
Huiskes, R. et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150. https://doi.org/10.1016/0021-9290(87)90030-3 (1987).Article 
CAS 
PubMed 

Google Scholar 
Weinans, H., Huiskes, R. & Grootenboer, H. J. The behavior of adaptive bone-remodeling simulation models. J. Biomech. 25, 1425–1441. https://doi.org/10.1016/0021-9290(92)90056-7 (1992).Article 
CAS 
PubMed 

Google Scholar 
Mellal, A., Wiskott, H. W., Botsis, J., Scherrer, S. S. & Belser, U. C. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin. Oral Implants Res. 15, 239–248. https://doi.org/10.1111/j.1600-0501.2004.01000.x (2004).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent. Mater. 23, 1073–1078. https://doi.org/10.1016/j.dental.2006.10.004 (2007).Article 
PubMed 

Google Scholar 
Lin, D., Li, Q., Li, W., Rungsiyakull, P. & Swain, M. Bone resorption induced by dental implants with ceramics crowns. J. Austral. Ceram. Soc. 45, 1–7 (2009).
Google Scholar 
Lin, D., Li, Q., Li, W. & Swain, M. Dental implant induced bone remodeling and associated algorithms. J. Mech. Behav. Biomed. Mater. 2, 410–432. https://doi.org/10.1016/j.jmbbm.2008.11.007 (2009).Article 
PubMed 

Google Scholar 
Rho, J. Y., Hobatho, M. C. & Ashman, R. B. Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17, 347–355. https://doi.org/10.1016/1350-4533(95)97314-F (1995).Article 
CAS 
PubMed 

Google Scholar 
Chen, J. et al. Multiscale design of surface morphological gradient for osseointegration. J. Mech. Behav. Biomed. Mater. 20, 387–397. https://doi.org/10.1016/j.jmbbm.2012.08.019 (2013).Article 
PubMed 

Google Scholar 
Mosekilde, L., Danielsen, C. C. & Knudsen, U. B. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 14, 1–6. https://doi.org/10.1016/8756-3282(93)90248-9 (1993).Article 
CAS 
PubMed 

Google Scholar 
Myers, R. H. & Montgomery, D. C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, 1971).
Google Scholar 
Hou, S., Li, Q., Long, S., Yang, X. & Li, W. Multiobjective optimization of multi-cell sections for the crashworthiness design. Int. J. Impact Eng. 35, 1355–1367. https://doi.org/10.1016/j.ijimpeng.2007.09.003 (2008).Article 
ADS 

Google Scholar 
Chankong, V. & Haimes, Y. Y. Multiobjective Decision Making: Theory and Methodology (Dover Publications, 2008).
Google Scholar 
Kütan, E., Bolukbasi, N., Yildirim-Ondur, E. & Ozdemir, T. Clinical and radiographic evaluation of marginal bone changes around platform-switching implants placed in crestal or subcrestal positions: A randomized controlled clinical trial. Clin. Implant Dent. Relat. Res. 17(Suppl 2), e364–e375. https://doi.org/10.1111/cid.12248 (2015).Article 
PubMed 

Google Scholar 
Silva, C. E. P. et al. Effect of CAD/CAM abutment height and cement type on the retention of zirconia crowns. Implant Dent. 27, 582–587. https://doi.org/10.1097/id.0000000000000811 (2018).Article 
PubMed 

Google Scholar 
Chokaree, P., Poovarodom, P., Chaijareenont, P. & Rungsiyakull, P. Effect of customized and prefabricated healing abutments on peri-implant soft tissue and bone in immediate implant sites: A randomized controlled trial. J. Clin. Med. 13, 886 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Tomasi, C. et al. Morphogenesis of peri-implant mucosa revisited: An experimental study in humans. Clin. Oral Implants Res. 25, 997–1003. https://doi.org/10.1111/clr.12223 (2014).Article 
PubMed 

Google Scholar 
Inoue, T. et al. Immunolocalization of proliferating cell nuclear antigen in the peri-implant epithelium. Bull. Tokyo Dent. Coll. 38, 187–193 (1997).CAS 
PubMed 

Google Scholar 
Schupbach, P. & Glauser, R. The defense architecture of the human periimplant mucosa: A histological study. J. Prosthet. Dent. 97, S15–S25. https://doi.org/10.1016/s0022-3913(07)60004-3 (2007).Article 
PubMed 

Google Scholar 
Lawn, B. R. et al. Materials design of ceramic-based layer structures for crowns. J. Dent. Res. 81, 433–438. https://doi.org/10.1177/154405910208100615 (2002).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles