Ion-conductive properties and lithium battery performance of composite polymer electrolytes filled with lignin derivatives

Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P. Occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrolysis. 2000;54:153–92.Article 
CAS 

Google Scholar 
Kai D, Chow LP, Loh XJ. Lignin and its properties. Function materials from lignin: methods and advances. 2018. p. 1–28. https://doi.org/10.1142/9781786345219_0001.Chatterjee S, Saito T. Lignin-derived advanced carbon materials. ChemSusChem. 2015;8:3941–58.Article 
CAS 
PubMed 

Google Scholar 
Adler, E. Lignin chemistry – past, present and future. Wood Sci. Technol. 1977;11:169–218.Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.Article 
CAS 
PubMed 

Google Scholar 
Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:2–7.Article 

Google Scholar 
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M et al. A lithium superionic conductor. Nat Mater. 2011;10:682–6.Article 
CAS 
PubMed 

Google Scholar 
Li J, Ma C, Chi M, Liang C, Dudney NJ. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater. 2015;5:1–6.Article 

Google Scholar 
Fu X, Yu D, Zhou J, Li S, Gao X, Han Y et al. Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm. 2016;18:4236–58.Article 
CAS 

Google Scholar 
Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A. 2016;4:17025–32.Article 
CAS 

Google Scholar 
Kim JK, Lim YJ, Kim H, Cho GB, Kim Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 2015;8:3589–96.Article 
CAS 

Google Scholar 
Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F et al. Interface limited lithium transport in solid-state batteries. J Phys Chem Lett. 2014;5:298–303.Article 
CAS 
PubMed 

Google Scholar 
Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116:9438–84.Article 
CAS 
PubMed 

Google Scholar 
Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta. 2011;57:4–13.Article 

Google Scholar 
Hallinan DT, Balsara NP. Polymer electrolytes. Annu Rev Mater Res. 2013;43:503–25.Article 
CAS 

Google Scholar 
Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev. 2017;46:797–815.Article 
CAS 
PubMed 

Google Scholar 
Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 1973;14:589.Article 
CAS 

Google Scholar 
Takeoka S, Ohno H, Tsuchida E. Recent advancement of ion-conductive polymers. Polym Adv Technol. 1993;4:53–73.Article 
CAS 

Google Scholar 
Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B. Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta. 2000;45:1481–90.Article 
CAS 

Google Scholar 
Armand MB. Polymer electrolytes. Annu Rev Mater Res. 1986;16:245–61.Article 
CAS 

Google Scholar 
Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. 2014;50:4448–50.Article 
CAS 

Google Scholar 
Ratner MA, Shriver DF. Ion transport in solvent-free polymers. Chem Rev. 1988;88:109–24.Article 
CAS 

Google Scholar 
Munshi MZA, Owens BB, Nguyen S. Measurement of Li+ ion transport number in poly(ethylene oxide)-LiX complexes. Polym J. 1988;20:597–602.Article 
CAS 

Google Scholar 
Zhang X, Fedkiw PS. Ionic transport and interfacial stability of sulfonate-modified fumed silicas as nanocomposite electrolytes. J Electrochem Soc. 2005;152:A2413–A2420.Article 
CAS 

Google Scholar 
Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456–8.Article 
CAS 

Google Scholar 
Fan L-Z, Hu Y-S, Bhattacharyya AJ, Maier J. Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater. 2007;17:2800–7.Article 
CAS 

Google Scholar 
Bhide A, Hariharan K. Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polym J. 2007;43:4253–70.Article 
CAS 

Google Scholar 
Lin D, Liu W, Liu Y, Lee HR, Hsu P-C, Liu K et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2015;16:459–65.Article 
PubMed 

Google Scholar 
Li Z, Matsumoto H, Tominaga Y. Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polym Adv Technol. 2018;29:820–4.Article 
CAS 

Google Scholar 
Forsyth M, MacFarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ. The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ion. 2002;147:203–11.Article 
CAS 

Google Scholar 
Singh TJ, Bhat SV. Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with δ-Al2O3 nanoparticles. J Power Sources. 2004;129:280–7.Article 
CAS 

Google Scholar 
Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta. 2015;176:1136–42.Article 
CAS 

Google Scholar 
Wang SX, Yang L, Stubbs LP, Li X, He C. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces. 2013;5:12275–82.Article 
CAS 
PubMed 

Google Scholar 
Chen T, Hu J, Zhang L, Pan J, Liu Y, Cheng YT. High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin. J Power Sources. 2017;362:236–42.Article 
CAS 

Google Scholar 
Ma Y, Chen K, Ma J, Xu G, Dong S, Chen B et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ Sci. 2019;12:273–80.Article 

Google Scholar 
Gong SD, Huang Y, Cao HJ, Lin YH, Li Y, Tang SH et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources. 2016;307:624–33.Article 
CAS 

Google Scholar 
Liu B, Huang Y, Cao H, Song A, Lin Y, Wang M et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. J Solid State Electrochem. 2017;22:807–16.Article 

Google Scholar 
Baroncini EA, Rousseau DM, Strekis CA, Stanzione JF. Viability of low molecular weight lignin in developing thiol-ene polymer electrolytes with balanced thermomechanical and conductive properties. Macromol Rapid Commun. 2021;42:2000477.Article 
CAS 

Google Scholar 
Jeong D, Shim J, Shin H, Lee J-C. Sustainable lignin-derived cross-linked graft polymers as electrolyte and binder materials for lithium metal batteries. ChemSusChem. 2020;13:2642–9.Article 
CAS 
PubMed 

Google Scholar 
Liu H, Mulderrig L, Hallinan D, Chung H. Lignin-based solid polymer electrolytes: lignin-graft-poly(ethylene glycol). Macromol Rapid Commun. 2021;42:1–6.Article 

Google Scholar 
Wang S, Zhang L, Wang A, Liu X, Chen J, Wang Z et al. Polymer-laden composite lignin-based electrolyte membrane for high-performance lithium batteries. ACS Sustain Chem Eng. 2018;6:14460–9.Article 
CAS 

Google Scholar 
Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021;31:1–11.Article 

Google Scholar 
Kubo S, Kadla JF. Effect of poly(ethylene oxide) molecular mass on miscibility and hydrogen bonding with lignin. Holzforschung. 2006;60:245–52.Article 
CAS 

Google Scholar 
Kubo S, Kadla JF. Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules. 2004;37:6904–11.Article 
CAS 

Google Scholar 
Kubo S, Kadla JF. Kraft lignin/poly(ethylene oxide) blends: Effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci. 2005;98:1437–44.Article 
CAS 

Google Scholar 
Liu Z, Shikinaka K, Otsuka Y, Tominaga Y. Enhanced ionic conduction in composite polymer electrolytes filled with plant biomass “lignin”. Chem Commun. 2022;58:4504–7.Article 
CAS 

Google Scholar 
Kadla JF, Kubo S. Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules. 2003;36:7803–11.Article 
CAS 

Google Scholar 
Matsushita Y, Oyabu Y, Aoki D, Fukushima K. Unexpected polymerization mechanism of dilignol in the lignin growing. R Soc Open Sci. 2019;6:190445.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shi Z, Zhou J, Li R. Application of reaction force field molecular dynamics in lithium batteries. Front Chem. 2021;8:1–5.Article 
CAS 

Google Scholar 
Tan W, Tominaga Y. Modeling analysis of ionic solvation structure in concentrated poly(ethylene carbonate) electrolytes. Electrochim Acta. 2023;464:142875.Article 
CAS 

Google Scholar 
Kadla JF, Kubo S. Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends. Compos Part A Appl Sci Manuf. 2004;35:395–400.Article 

Google Scholar 
Soongprasit K, Sricharoenchaikul V, Atong D. Phenol-derived products from fast pyrolysis of organosolv lignin. Energy Rep. 2020;6:151–67.Article 

Google Scholar 
Jayaramudu T, Ko HU, Kim HC, Kim JW, Choi ES, Kim J. Adhesion properties of poly(ethylene oxide)-lignin blend for nanocellulose composites. Compos Part B Eng. 2019;156:43–50.Article 
CAS 

Google Scholar 
Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta. 2014;133:529–38.Article 
CAS 

Google Scholar 
Chen HW, Jiang CH, Wu HD, Chang FC. Hydrogen bonding effect on the poly(ethylene oxide), phenolic resin, and lithium perchlorate-based solid-state electrolyte. J Appl Polym Sci 2004;91:1207–16.Article 
CAS 

Google Scholar 
Guo L, Dou R, Wu Y, Zhang R, Wang L, Wang Y et al. From lignin waste to efficient catalyst: illuminating the impact of lignin structure on catalytic activity of cycloaddition reaction. ACS Sustain Chem Eng 2019;7:16585–94.Article 
CAS 

Google Scholar 
Liu Y, Lee JY, Hong L. In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J Power Sources. 2004;129:303–11.Article 
CAS 

Google Scholar 
Meghnani D, Gupta H, Singh SK, Srivastava N, Mishra R, Tiwari RK et al. Fabrication and electrochemical characterization of lithium metal battery using IL-based polymer electrolyte and Ni-rich NCA cathode. Ionics. 2020;26:4835–51.Article 
CAS 

Google Scholar 
Reddy MJ, Chu PP, Rao UVS. Study of multiple interactions in mesoporous composite PEO electrolytes. J Power Sources. 2006;158:614–9.Manuel Stephan A, Nahm KS. Review on composite polymer electrolytes for lithium batteries. Polymer. 2006;47:5952–64.Article 

Google Scholar 
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–418.Article 
CAS 
PubMed 

Google Scholar 
Bruce PG, Vincent CA. Polymer electrolytes. J Chem Soc Faraday Trans. 1993;89:3187–203.Article 
CAS 

Google Scholar 
Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater. 1998;10:439–48.Article 
CAS 
PubMed 

Google Scholar 
Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta. 2018;292:718–26.Article 
CAS 

Google Scholar 
Zhang Y, Wang CY, Tang X. Cycling degradation of an automotive LiFePO4 lithium-ion battery. J Power Sources. 2011;196:1513–20.Article 
CAS 

Google Scholar 
Lopez J, Mackanic DG, Cui Y, Bao Z. Designing polymers for advanced battery chemistries. Nat Rev Mater. 2019;4:312–30.Article 
CAS 

Google Scholar 

Hot Topics

Related Articles