Identification of hub genes associated with neutrophils in chronic rhinosinusitis with nasal polyps

Shi, J. B. et al. Epidemiology of chronic rhinosinusitis: Results from a cross-sectional survey in seven Chinese cities. Allergy 70, 533–539. https://doi.org/10.1111/all.12577 (2015).Article 
CAS 
PubMed 

Google Scholar 
Jarvis, D. et al. Asthma in adults and its association with chronic rhinosinusitis: The GA2LEN survey in Europe. Allergy 67, 91–98. https://doi.org/10.1111/j.1398-9995.2011.02709.x (2012).Article 
CAS 
PubMed 

Google Scholar 
Pleis, J. R., Lucas, J. W. & Ward, B. W. Summary health statistics for U.S. adults: National Health Interview Survey, 2008. Vital Health Stat. Ser. 10 Data Natl. Health Surv. 242, 1–157 (2009).
Google Scholar 
Van Zele, T. et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61, 1280–1289. https://doi.org/10.1111/j.1398-9995.2006.01225.x (2006).Article 
CAS 
PubMed 

Google Scholar 
Poposki, J. A. et al. Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 149, 1666–1674. https://doi.org/10.1016/j.jaci.2021.11.023 (2022).Article 
CAS 
PubMed 

Google Scholar 
Delemarre, T. et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 147, 179-188.e172. https://doi.org/10.1016/j.jaci.2020.08.036 (2021).Article 
CAS 
PubMed 

Google Scholar 
Calus, L. et al. Twelve-year follow-up study after endoscopic sinus surgery in patients with chronic rhinosinusitis with nasal polyposis. Clin. Transl. Allergy 9, 30. https://doi.org/10.1186/s13601-019-0269-4 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Delemarre, T., Bochner, B. S., Simon, H. U. & Bachert, C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J. Allergy Clin. Immunol. 148, 327–335. https://doi.org/10.1016/j.jaci.2021.03.024 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Green, R. H. et al. Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57, 875–879. https://doi.org/10.1136/thorax.57.10.875 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wen, W. et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J. Allergy Clin. Immunol. 129, 1522-1528.e1525. https://doi.org/10.1016/j.jaci.2012.01.079 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 16, 431–446. https://doi.org/10.1038/nrc.2016.52 (2016).Article 
CAS 
PubMed 

Google Scholar 
de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 16, 378–391. https://doi.org/10.1038/nri.2016.49 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tsai, Y. J., Hao, S. P., Chen, C. L. & Wu, W. B. Thromboxane A2 regulates CXCL1 and CXCL8 chemokine expression in the nasal mucosa-derived fibroblasts of chronic rhinosinusitis patients. PLoS One 11, e0158438. https://doi.org/10.1371/journal.pone.0158438 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhai, G. T. et al. IgD-activated mast cells induce IgE synthesis in B cells in nasal polyps. J. Allergy Clin. Immunol. 142, 1489-1499.e1423. https://doi.org/10.1016/j.jaci.2018.07.025 (2018).Article 
CAS 
PubMed 

Google Scholar 
Shimizu, S., Kouzaki, H., Kato, T., Tojima, I. & Shimizu, T. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Am. J. Rhinol. Allergy 30, 167–172. https://doi.org/10.2500/ajra.2016.30.4300 (2016).Article 
PubMed 

Google Scholar 
Ozturk, A. B., Bayraktar, R., Gogebakan, B., Mumbuc, S. & Bayram, H. Comparison of inflammatory cytokine release from nasal epithelial cells of non-atopic non-rhinitic, allergic rhinitic and polyp subjects and effects of diesel exhaust particles in vitro. Allergol. Immunopathol. 45, 473–481. https://doi.org/10.1016/j.aller.2016.10.015 (2017).Article 
CAS 

Google Scholar 
Gevaert, E. et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 145, 427-430.e424. https://doi.org/10.1016/j.jaci.2019.08.027 (2020).Article 
PubMed 

Google Scholar 
Ye, X. et al. Type 17 mucosal-associated invariant T cells contribute to neutrophilic inflammation in patients with nasal polyps. J. Allergy Clin. Immunol. 152, 1153-1166.e1112. https://doi.org/10.1016/j.jaci.2023.06.021 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wei, Y. et al. Activated pyrin domain containing 3 (NLRP3) inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps (CRSwNP). J. Allergy Clin. Immunol. 145, 1002-1005.e1016. https://doi.org/10.1016/j.jaci.2020.01.009 (2020).Article 
CAS 
PubMed 

Google Scholar 
Wang, H., Pan, L. & Liu, Z. Neutrophils as a protagonist and target in chronic rhinosinusitis. Clin. Exp. Otorhinolaryngol. 12, 337–347. https://doi.org/10.21053/ceo.2019.00654 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, H. & Kim, D. K. Neutrophils play an important role in the recurrence of chronic rhinosinusitis with nasal polyps. Biomedicines https://doi.org/10.3390/biomedicines10112911 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, D. K. et al. Elastase-positive neutrophils are associated with refractoriness of chronic rhinosinusitis with nasal polyps in an Asian population. Allergy Asthma Immunol. Res. 12, 42–55. https://doi.org/10.4168/aair.2020.12.1.42 (2020).Article 
CAS 
PubMed 

Google Scholar 
Vier, J., Groth, M., Sochalska, M. & Kirschnek, S. The anti-apoptotic Bcl-2 family protein A1/Bfl-1 regulates neutrophil survival and homeostasis and is controlled via PI3K and JAK/STAT signaling. Cell Death Dis. 7, e2103. https://doi.org/10.1038/cddis.2016.23 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karsan, A., Yee, E. & Harlan, J. M. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J. Biol. Chem. 271, 27201–27204. https://doi.org/10.1074/jbc.271.44.27201 (1996).Article 
CAS 
PubMed 

Google Scholar 
Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gélinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev. 13, 382–387. https://doi.org/10.1101/gad.13.4.382 (1999).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Valera, F. C., Queiroz, R., Scrideli, C., Tone, L. G. & Anselmo-Lima, W. T. Expression of transcription factors NF-kappaB and AP-1 in nasal polyposis. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 38, 579–585. https://doi.org/10.1111/j.1365-2222.2007.02929.x (2008).Article 
CAS 

Google Scholar 
Wang, J. H. et al. Intercellular adhesion molecule-1 (ICAM-1) is expressed on human neutrophils and is essential for neutrophil adherence and aggregation. Shock (Augusta, Ga.) 8, 357–361. https://doi.org/10.1097/00024382-199711000-00007 (1997).Article 
CAS 
PubMed 

Google Scholar 
Jung, H. J., Zhang, Y. L., Kim, D. K., Rhee, C. S. & Kim, D. Y. The role of NF-κB in chronic rhinosinusitis with nasal polyps. Allergy Asthma Immunol. Res. 11, 806–817. https://doi.org/10.4168/aair.2019.11.6.806 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Balázs, A. & Mall, M. A. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr. Pulmonol. 54(Suppl 3), S5-s12. https://doi.org/10.1002/ppul.24462 (2019).Article 
PubMed 

Google Scholar 
Ruan, J. W. et al. Characterizing the neutrophilic inflammation in chronic rhinosinusitis with nasal polyps. Front. Cell Dev. Biol. 9, 793073. https://doi.org/10.3389/fcell.2021.793073 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Spahn, J. H. et al. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation. J. Immunol. (Baltimore, Md.: 1950) 194, 4039–4048. https://doi.org/10.4049/jimmunol.1401415 (2015).Article 
CAS 

Google Scholar 
Peng, Y. et al. Whole-transcriptome sequencing reveals heightened inflammation and defective host defence responses in chronic rhinosinusitis with nasal polyps. Eur. Respir. J. https://doi.org/10.1183/13993003.00732-2019 (2019).Article 
PubMed 

Google Scholar 
Stevens, W. W. et al. Cytokines in chronic rhinosinusitis. Role in eosinophilia and aspirin-exacerbated respiratory disease. Am. J. Respir. Crit. Care Med. 192, 682–694. https://doi.org/10.1164/rccm.201412-2278OC (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, W. et al. Transcriptome analysis reveals distinct gene expression profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. Sci. Rep. 6, 26604. https://doi.org/10.1038/srep26604 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, Engl.) 28, 882–883. https://doi.org/10.1093/bioinformatics/bts034 (2012).Article 
CAS 

Google Scholar 
Tang, K. et al. Rank-in: Enabling integrative analysis across microarray and RNA-seq for cancer. Nucleic Acids Res. 49, e99. https://doi.org/10.1093/nar/gkab554 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218. https://doi.org/10.1186/s13059-016-1070-5 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112. https://doi.org/10.1038/nature08460 (2009).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34. https://doi.org/10.1186/s13073-019-0638-6 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. (Clifton, N.J.) 1711, 243–259. https://doi.org/10.1007/978-1-4939-7493-1_12 (2018).Article 
CAS 

Google Scholar 
Fokkens, W. J. et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58, 1–464. https://doi.org/10.4193/Rhin20.600 (2020).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles