A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy

Zhang, S. et al. Penta-graphene: a new carbon allotrope. Proc. Natl Acad. Sci. USA 112, 2372–2377 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y., Li, Y. & Chen, Z. Not your familiar two-dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer. J. Mater. Chem. C 3, 9603–9608 (2015).Article 
CAS 

Google Scholar 
Shen, Y. & Wang, Q. Pentagon-based 2D materials: classification, properties and applications. Phys. Rep. 964, 1–42 (2022).Article 
CAS 

Google Scholar 
Liang, Q. J., Chen, Z. L., Zhang, Q. & Wee, A. T. S. Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater. 32, 2203555 (2022).Article 
CAS 

Google Scholar 
Kempt, R., Kuc, A. & Heine, T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. Int. Ed. 59, 9242–9254 (2020).Article 
CAS 

Google Scholar 
Gu, Y. et al. Two-dimensional palladium diselenide with strong in-plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater. 32, e1906238 (2020).Article 
PubMed 

Google Scholar 
Jiang, S. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 15, e1902789 (2019).Article 
PubMed 

Google Scholar 
Lan, Y.-S., Chen, X.-R., Hu, C.-E., Cheng, Y. & Chen, Q.-F. Penta-PdX2 (X = S, Se, Te) monolayers: promising anisotropic thermoelectric materials. J. Mater. Chem. A 7, 11134–11142 (2019).Article 
CAS 

Google Scholar 
Tao, W. L., Zhao, Y. Q., Zeng, Z. Y., Chen, X. R. & Geng, H. Y. Anisotropic thermoelectric materials: pentagonal PtM2 (M = S, Se, Te). ACS Appl. Mater. Interfaces 13, 8700–8709 (2021).Article 
CAS 
PubMed 

Google Scholar 
Marfoua, B. & Hong, J. High thermoelectric performance in hexagonal 2D PdTe2 monolayer at room temperature. ACS Appl. Mater. Interfaces 11, 38819–38827 (2019).Article 
CAS 
PubMed 

Google Scholar 
Xiong, W., Huang, K. & Yuan, S. The mechanical, electronic and optical properties of two-dimensional transition metal chalcogenides MX2 and M2X3 (M = Ni, Pd; X = S, Se, Te) with hexagonal and orthorhombic structures. J. Mater. Chem. C 7, 13518–13525 (2019).Article 
CAS 

Google Scholar 
Ma, Y., Kou, L., Li, X., Dai, Y. & Heine, T. Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. NPG Asia Mater. 8, e264 (2016).Article 
CAS 

Google Scholar 
Li, X. Y., Meng, S. & Sun, J. T. Emergence of d-orbital magnetic Dirac fermions in a MoS2 monolayer with squared pentagon structure. Phys. Rev. B 101, 144409 (2020).Article 
CAS 

Google Scholar 
Li, X. et al. Monolayer puckered pentagonal VTe2: an emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Res. 15, 1486–1491 (2021).Article 

Google Scholar 
Oyedele, A. D. et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139, 14090–14097 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, P. et al. Penta-PdPSe: a new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy. Adv. Mater. 33, e2102541 (2021).Article 
PubMed 

Google Scholar 
Chow, W. L. et al. High mobility 2D palladium diselenide field-fffect transistors with tunable ambipolar characteristics. Adv. Mater. 29, 1602969 (2017).Article 

Google Scholar 
Duan, R. et al. 2D Cairo pentagonal PdPS: air‐stable anisotropic ternary semiconductor with high optoelectronic performance. Adv. Funct. Mater. 32, 2113255 (2022).Article 
CAS 

Google Scholar 
Folmer, J. C. W., Turner, J. A. & Parkinson, B. A. Amelioration of the photoresponse of PdPS photoanodes by ferrocyanide electrolytes. Inorg. Chem. 24, 4028–4030 (1985).Article 
CAS 

Google Scholar 
Folmer, J. C. W., Turner, J. A. & Parkinson, B. A. Photoelectrochemical characterization of several semiconducting compounds of palladium with sulfur and/or phosphorus. J. Solid State Chem. 68, 28–37 (1987).Article 
CAS 

Google Scholar 
Yu, J. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 12, 1083 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jia, L., Wu, J., Yang, T., Jia, B. & Moss, D. J. Large third-order optical Kerr nonlinearity in nanometer-thick PdSe2 2D dichalcogenide films: implications for nonlinear photonic devices. ACS Appl. Nano Mater. 3, 6876–6883 (2020).Article 
CAS 

Google Scholar 
Oyedele, A. D. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 141, 8928–8936 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lin, J. et al. Novel Pd2Se3: two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 119, 016101 (2017).Article 
PubMed 

Google Scholar 
Guo, Y. G., Zhou, J., Xie, H. H., Chen, Y. Y. & Wang, Q. Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current. NPJ Comput. Mater. 8, 40 (2022).Article 
CAS 

Google Scholar 
Fang, Y. et al. Structure re-determination and superconductivity observation of bulk 1T MoS2. Angew. Chem. Int. Ed. 57, 1232–1235 (2018).Article 
CAS 

Google Scholar 
Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Q. et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2, 164–170 (2019).Article 

Google Scholar 
D’Olimpio, G. et al. PdTe2 transition‐metal dichalcogenide: chemical reactivity, thermal stability, and device implementation. Adv. Funct. Mater. 30, 1906556 (2019).Article 

Google Scholar 
Zheng, J. et al. Chemical synthesis and integration of highly conductive PdTe2 with low-dimensional semiconductors for p-type transistors with low contact barriers. Adv. Mater. 33, e2101150 (2021).Article 
PubMed 

Google Scholar 
Liu, C. et al. Two-dimensional superconductivity and topological states in PdTe2 thin films. Phys. Rev. Mater. 2, 094001 (2018).Article 
CAS 

Google Scholar 
Liu, W. et al. New Verbeekite-type polymorphic phase and rich phase diagram in the PdSe2−xTex system. Phys. Rev. B 104, 024507 (2021).Article 
CAS 

Google Scholar 
Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).Article 
CAS 
PubMed 

Google Scholar 
Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L., Zemlyanov, D. & Chen, Y. P. Epitaxial growth of monolayer PdTe2 and patterned PtTe2 by direct tellurization of Pd and Pt surfaces. 2D Mater. 8, 045033 (2021).Article 
CAS 

Google Scholar 
Li, E. et al. High quality PdTe2 thin films grown by molecular beam epitaxy. Chin. Phys. B 27, 5 (2018).CAS 

Google Scholar 
Okamoto, H. The Pd–Te system (palladium–tellurium). J. Phase Equilibria 13, 73–78 (1992).Article 
CAS 

Google Scholar 
Gjerding, M. N. et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021).Article 
CAS 

Google Scholar 
Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).Article 
CAS 

Google Scholar 
Zhang, W., Cui, Y., Zhu, C., Huang, B. & Yan, S. Flexible ferroelasticity in monolayer PdS2: a DFT study. Phys. Chem. Chem. Phys. 23, 10551–10559 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bosnar, M., Caciuc, V., Atodiresei, N., Lončarić, I. & Blügel, S. Se intercalation between PtSe2 and the Pt surface during synthesis of PtSe2 by direct selenization of Pt(111). Phys. Rev. B 102, 115427 (2020).Article 
CAS 

Google Scholar 
Perea Acosta, J., Barral, M. A. & Maria Llois, A. Monolayer of PtSe2 on Pt(111): is it metallic or insulating? J. Phys. Condens. Matter 32, 235002 (2020).Article 
PubMed 

Google Scholar 
Zemlyanov, D. Y. et al. Versatile technique for assessing thickness of 2D layered materials by XPS. Nanotechnology 29, 115705 (2018).Article 
PubMed 

Google Scholar 
Fu, M. et al. Defects in highly anisotropic transition-metal dichalcogenide PdSe2. J. Phys. Chem. Lett. 11, 740–746 (2020).Article 
CAS 
PubMed 

Google Scholar 
Perdew, J. P. & Levy, M. Physical content of the exact Kohn–Sham orbital energies: bandgaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884–1887 (1983).Article 
CAS 

Google Scholar 
Verma, P. & Truhlar, D. G. HLE16: a local Kohn–Sham gradient approximation with good performance for semiconductor band gaps and molecular excitation energies. J. Phys. Chem. Lett. 8, 380–387 (2017).Article 
CAS 
PubMed 

Google Scholar 
Sorensen, S. G. et al. Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 8, 6788–6796 (2014).Article 
PubMed 

Google Scholar 
Tumino, F., Casari, C. S., Passoni, M., Russo, V. & Li Bassi, A. Pulsed laser deposition of single-layer MoS2 on Au(111): from nanosized crystals to large-area films. Nanoscale Adv. 1, 643–655 (2019).Article 
CAS 
PubMed 

Google Scholar 
Hoffmann, S., Søndergaard, C., Schultz, C., Li, Z. & Hofmann, P. An undulator-based spherical grating monochromator beamline for angle-resolved photoemission spectroscopy. Nucl. Instrum. Methods Phys. Res. A 523, 441–453 (2004).Article 
CAS 

Google Scholar 
Bianchi, M. et al. Status and strategy at ISA, Centre for Storage Ring Facilities, Aarhus University, Denmark. Eur. Phys. J. 138, 132 (2023).
Google Scholar 
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).Article 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 

Google Scholar 
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).Article 
CAS 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 
CAS 

Google Scholar 
Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).Article 

Google Scholar 
Liu, L., Ji, Y. & Hus, S. M. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. Figshare https://doi.org/10.6084/m9.figshare.22724963 (2024).

Hot Topics

Related Articles