Simulation-driven design of stabilized SARS-CoV-2 spike S2 immunogens

Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Hsieh, C.-L. et al. Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep. 37, 109929 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases—clinical characteristics, laboratory findings, radiographic signs and outcomes: a systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
World Health Organization. WHO COVID-19 Dashboard. https://covid19.who.int/ (2023).Barouch, D. H. Covid-19 vaccines—immunity, variants, boosters. N. Engl. J. Med. 387, 1011–1020 (2022).Article 
PubMed 

Google Scholar 
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).Article 
PubMed 

Google Scholar 
Centers for Disease Control and Prevention. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker/#variant-proportions (2023).Hsieh, C.-L. & McLellan, J. S. Protein engineering responses to the COVID-19 pandemic. Curr. Opin. Struct. Biol. 74, 102385 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Casalino, L. et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 6, 1722–1734 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science 369, 650–655 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).Article 
PubMed 

Google Scholar 
Piccoli, L. et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 1024–1042.e21 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Andreano, E. et al. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proc. Natl Acad. Sci. USA 118, e2103154118 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850–854 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C. et al. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nat. Commun. 12, 1715 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Z. et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe 29, 477–488.e4 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476.e6 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Dacon, C. et al. Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host Microbe 31, 97–111.e12 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Halfmann, P. J. et al. Multivalent S2-based vaccines provide broad protection against SARS-CoV-2 variants of concern and pangolin coronaviruses. eBioMedicine 86, 104341 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science 373, 1109–1116 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728–735 (2022).Article 
ADS 
PubMed 

Google Scholar 
Zhou, P. et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci. Transl. Med. 14, eabi9215 (2022).Article 
PubMed 

Google Scholar 
Silva, R. P. et al. Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. Elife 12, e83710 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Claireaux, M. et al. A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nat. Commun. 13, 4539 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Costello, S. M. et al. The SARS-CoV-2 spike reversibly samples an open-trimer conformation exposing novel epitopes. Nat. Struct. Mol. Biol. 29, 229–238 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).Article 
ADS 
PubMed 

Google Scholar 
Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Hsieh, C.-L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).Article 
ADS 
PubMed 

Google Scholar 
Hsieh, C.-L. et al. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat. Commun. 15, 1553 (2024).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Casalino, L. et al. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. ACS Cent. Sci. 8, 1646–1663 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bangaru, S. et al. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 177, 1136–1152.e18 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547, 360–363 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gilman, M. S. A. et al. Transient opening of trimeric prefusion RSV F proteins. Nat. Commun. 10, 2105 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Rush, S. A. et al. Characterization of prefusion-F-specific antibodies elicited by natural infection with human metapneumovirus. Cell Rep. 40, 111399 (2022).Article 
PubMed 

Google Scholar 
Zhang, P. et al. Hepatitis C virus epitope-specific neutralizing antibodies in Igs prepared from human plasma. Proc. Natl Acad. Sci. USA 104, 8449–8454 (2007).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gong, H.-R. et al. Non-neutralizing epitopes shade neutralizing epitopes against Omicron in a multiple epitope-based vaccine. ACS Infect. Dis. 8, 2586–2593 (2022).Article 
PubMed 

Google Scholar 
Zuckerman, D. M. & Chong, L. T. Weighted ensemble simulation: review of methodology, applications, and software. Annu. Rev. Biophys. 46, 43–57 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Bangaru, S. et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science 370, 1089–1094 (2020).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).Article 
PubMed 

Google Scholar 
Bernardi, R. C., Melo, M. C. R. & Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta Gen. Subj. 1850, 872–877 (2015).Article 

Google Scholar 
Wang, J. et al. Gaussian accelerated molecular dynamics: principles and applications. WIREs Comput. Mol. Sci. 11, e1521 (2021).Article 

Google Scholar 
Sztain, T. et al. A glycan gate controls opening of the SARS-CoV-2 spike protein. Nat. Chem. 13, 963–968 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Huber, G. A. & Kim, S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J. 70, 97–110 (1996).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, B. W., Jasnow, D. & Zuckerman, D. M. The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures. J. Chem. Phys. 132, 54107 (2010).Article 
ADS 

Google Scholar 
Russo, J. D. et al. WESTPA 2.0: high-performance upgrades for weighted ensemble simulations and analysis of longer-timescale applications. J. Chem. Theory Comput. 18, 638–649 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Bogetti, A. T. et al. A suite of advanced tutorials for the WESTPA 2.0 rare-events sampling software [article v2.0]. Living J. Comput. Mol. Sci. 5, 1655–1655 (2022).Article 

Google Scholar 
Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).Article 
PubMed 

Google Scholar 
Scheurer, M. et al. PyContact: rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophys. J. 114, 577–583 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Eriksson, A. E. et al. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992).Article 
ADS 
PubMed 

Google Scholar 
McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Xiang, S.-H. et al. Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein. J. Virol. 76, 9888–9899 (2002).Article 
PubMed 
PubMed Central 

Google Scholar 
Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Suárez, E. et al. Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories. J. Chem. Theory Comput. 10, 2658–2667 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Saglam, A. S. & Chong, L. T. Protein–protein binding pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations. Chem. Sci. 10, 2360–2372 (2019).Article 
PubMed 

Google Scholar 
Bhatt, D., Zhang, B. W. & Zuckerman, D. M. Steady-state simulations using weighted ensemble path sampling. J. Chem. Phys. 133, 14110 (2010).Article 
ADS 

Google Scholar 
Lu, M. et al. Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles. Cell Host Microbe 28, 880–891.e8 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Das, D. K. et al. Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 174, 926–937.e12 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Lu, M. et al. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 568, 415–419 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Seeliger, D. & de Groot, B. L. Protein thermostability calculations using alchemical free energy simulations. Biophys. J. 98, 2309–2316 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Goike, J. et al. Synthetic repertoires derived from convalescent COVID-19 patients enable discovery of SARS-CoV-2 neutralizing antibodies and a novel quaternary binding modality. Preprint at bioRxiv https://doi.org/10.1101/2021.04.07.438849 (2021).Goike, J. et al. SARS-COV-2 Omicron variants conformationally escape a rare quaternary antibody binding mode. Commun. Biol. 6, 1250 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Castelli, M. et al. Decrypting allostery in membrane-bound K-Ras4B using complementary in silico approaches based on unbiased. Mol. Dyn. Simul. J. Am. Chem. Soc. 146, 901–919 (2024).Article 

Google Scholar 
Ray, D., Quijano, R. N. & Andricioaei, I. Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies. Chem. Sci. 13, 7224–7239 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Oliveira, A.S.F. et al. Allosteric modulation by the fatty acid site in the glycosylated SARS-CoV-2 spike. eLife. 13, RP97313 (2024).Sikora, M. et al. Computational epitope map of SARS-CoV-2 spike protein. PLoS Comput. Biol. 17, e1008790 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Serapian, S. A. et al. The answer lies in the energy: how simple atomistic molecular dynamics simulations may hold the key to epitope prediction on the fully glycosylated SARS-CoV-2 spike protein. J. Phys. Chem. Lett. 11, 8084–8093 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Triveri, A. et al. SARS-CoV-2 spike protein mutations and escape from antibodies: a computational model of epitope loss in variants of concern. J. Chem. Inf. Model. 61, 4687–4700 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).Article 
PubMed 

Google Scholar 
Huang, J. & MacKerell, A. D. Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W. & MacKerell, A. D. J. CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Chem. Theory Comput. 5, 2353–2370 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 1087 (1983).Article 

Google Scholar 
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 44130 (2020).Article 

Google Scholar 
Ermak, D. L. & McCammon, J. A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 1352–1360 (1978).Article 
ADS 

Google Scholar 
Loncharich, R. J., Brooks, B. R. & Pastor, R. W. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers 32, 523–535 (1992).Article 
PubMed 

Google Scholar 
Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).Article 
ADS 

Google Scholar 
Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).Article 
ADS 

Google Scholar 
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).Article 
ADS 

Google Scholar 
Crowley, M. F., Williamson, M. J. & Walker, R. C. CHAMBER: comprehensive support for CHARMM force fields within the AMBER software. Int. J. Quantum Chem. 109, 3767–3772 (2009).Article 
ADS 

Google Scholar 
Torrillo, P. A., Bogetti, A. T. & Chong, L. T. A minimal, adaptive binning scheme for weighted ensemble simulations. J. Phys. Chem. A 125, 1642–1649 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S. & Brandsdal, B. O. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 384, 288–294 (2004).Article 
ADS 

Google Scholar 
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Piana, S., Lindorff-Larsen, K. & Shaw, D. E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 100, L47–L49 (2011).Article 
PubMed 
PubMed Central 

Google Scholar 
Freddolino, P. L., Park, S., Roux, B. & Schulten, K. Force field bias in protein folding simulations. Biophys. J. 96, 3772–3780 (2009).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Fischer, A.-L. M. et al. The role of force fields and water models in protein folding and unfolding dynamics. J. Chem. Theory Comput. 20, 2321–2333 (2024).Pettersen, E. F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article 
PubMed 

Google Scholar 
Gapsys, V., Michielssens, S., Seeliger, D. & de Groot, B. L. pmx: automated protein structure and topology generation for alchemical perturbations. J. Comput. Chem. 36, 348–354 (2015).Article 
PubMed 

Google Scholar 
Jones, K. F. M., Shehata, M., Carpenter, M. A., Amaro, R. E. & Harki, D. A. APOBEC3A catalytic inactivity mutation induces tertiary structure destabilization. ACS Med. Chem. Lett. 14, 338–343 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).Article 
ADS 

Google Scholar 
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).Article 
ADS 

Google Scholar 
Gapsys, V., Seeliger, D. & de Groot, B. L. New soft-core potential function for molecular dynamics based alchemical free energy calculations. J. Chem. Theory Comput. 8, 2373–2382 (2012).Article 
PubMed 

Google Scholar 
Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).Article 
ADS 

Google Scholar 
Shirts, M. R., Bair, E., Hooker, G. & Pande, V. S. Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys. Rev. Lett. 91, 140601 (2003).Article 
ADS 
PubMed 

Google Scholar 
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article 
PubMed 

Google Scholar 
Cianfrocco, M. A., Wong-Barnum, M., Youn, C., Wagner, R. & Leschziner, A. COSMIC2: a science gateway for cryo-electron microscopy structure determination. Pract. Exp. Adv. Res. Comput. 22, 1–5 (2017).Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Dieterle, M. E. et al. A replication-competent vesicular stomatitis virus for studies of SARS-CoV-2 spike-mediated cell entry and its inhibition. Cell Host Microbe 28, 486–496.e6 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Hodcroft, E. CoVariants. https://covariants.org/ (2023).Kleinfelter, L. M. et al. Haploid genetic screen reveals a profound and direct dependence on cholesterol for hantavirus membrane fusion. mBio 6, e00801–e00815 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles