Learning motif-based graphs for drug–drug interaction prediction via local–global self-attention

Dagli, R. J. & Sharma, A. Polypharmacy: a global risk factor for elderly people. J. Int. Oral Health 6, i–ii (2014).
Google Scholar 
Aggarwal, P., Woolford, S. J. & Patel, H. P. Multi-morbidity and polypharmacy in older people: challenges and opportunities for clinical practice. Geriatrics 5, 85 (2020).Article 

Google Scholar 
Jiang, H. et al. Adverse drug reactions and correlations with drug-drug interactions: a retrospective study of reports from 2011 to 2020. Front. Pharmacol. 13, 923939 (2022).Article 

Google Scholar 
Hao, X. et al. Enhancing drug-drug interaction prediction by three-way decision and knowledge graph embedding. Granul. Comput. 8, 67–76 (2023).Article 

Google Scholar 
Yang, Z., Zhong, W., Lv, Q. & Yu-Chian Chen, C. Learning size-adaptive molecular substructures for explainable drug-drug interaction prediction by substructure-aware graph neural network. Chem. Sci. 13, 8693–8703 (2022).Article 

Google Scholar 
Zhang, X. et al. Molormer: a lightweight self-attention-based method focused on spatial structure of molecular graph for drug-drug interactions prediction. Brief. Bioinform. 23, bbac296 (2022).Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl Acad. Sci. USA 115, e4304–e4311 (2018).Article 

Google Scholar 
Zhong, Y. et al. Emerging machine learning techniques in predicting adverse drug reactions. In Machine Learning and Deep Learning in Computational Toxicology 53–82 (Springer, 2023).Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34, i457–i466 (2018).Article 

Google Scholar 
Karim, M. R. et al. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. In Proc. 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics 113–123 (ACM, 2019).Huang, K., Xiao, C., Hoang, T., Glass, L. & Sun, J. CASTER: predicting drug interactions with chemical substructure representation. In Proc. AAAI Conference on Artificial Intelligence 702–709 (2020).Deng, Y. et al. META-DDIE: predicting drug-drug interaction events with few-shot learning. Brief. Bioinform. 23, bbab514 (2022).Xu, N., Wang, P., Chen, L., Tao, J. & Zhao, J. MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions. In Proc. 28th International Joint Conference on Artificial Intelligence 3968–3974 (AAAI Press, 2019).Li, Z. et al. DSN-DDI: an accurate and generalized framework for drug-drug interaction prediction by dual-view representation learning. Brief. Bioinform. 24, bbac597 (2023).Guo, Z. et al. Graph-based molecular representation learning. In Proc. Thirty-Second International Joint Conference on Artificial Intelligence 6638–6646 (2023).Xiong, Z. et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J. Med. Chem. 63, 8749–8760 (2020).Article 

Google Scholar 
Zhang, X. C. et al. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction. Brief. Bioinform. 22, bbab152 (2021).Yu, Z. & Gao, H. Molecular representation learning via heterogeneous motif graph neural networks. In International Conference on Machine Learning 25581–25594 (PMLR, 2022).Zhang, Z., Liu, Q., Wang, H., Lu, C. & Lee, C.-K. Motif-based graph self-supervised learning for molecular property prediction. In Proc. 35th International Conference on Neural Information Processing Systems 15870–15882 (Curran Associates, 2021).Bucher, H. C., Achermann, R., Stohler, N. & Meier, C. R. Surveillance of physicians causing potential drug-drug interactions in ambulatory care: a pilot study in Switzerland. PLoS ONE 11, e0147606 (2016).Article 

Google Scholar 
Smithburger, P. L., Buckley, M. S., Bejian, S., Burenheide, K. & Kane-Gill, S. L. A critical evaluation of clinical decision support for the detection of drug-drug interactions. Expert Opin. Drug Saf. 10, 871–882 (2011).Article 

Google Scholar 
Tornio, A., Filppula, A. M., Niemi, M. & Backman, J. T. Clinical studies on drug-drug interactions involving metabolism and transport: methodology, pitfalls, and interpretation. Clin. Pharmacol. Ther. 105, 1345–1361 (2019).Article 

Google Scholar 
Kaushik, S., Prasun, C. & Sharma, D. Translational and disease bioinformatics. In Encyclopedia of Bioinformatics and Computational Biology 1046–1057 (Elsevier, 2019).Jang, H. Y. et al. Machine learning-based quantitative prediction of drug exposure in drug-drug interactions using drug label information. npj Digit. Med. 5, 88 (2022).Article 

Google Scholar 
Hakkola, J., Hukkanen, J., Turpeinen, M. & Pelkonen, O. Inhibition and induction of CYP enzymes in humans: an update. Arch. Toxicol. 94, 3671–3722 (2020).Article 

Google Scholar 
Deodhar, M. et al. Mechanisms of CYP450 inhibition: understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 12, 846 (2020).Article 

Google Scholar 
Liu, N., Chen, C. B. & Kumara, S. Semi-supervised learning algorithm for identifying high-priority drug-drug interactions through adverse event reports. IEEE J. Biomed. Health Inform. 24, 57–68 (2020).Article 

Google Scholar 
Vo, T. H., Nguyen, N. T. K., Kha, Q. H. & Le, N. Q. K. On the road to explainable AI in drug-drug interactions prediction: a systematic review. Comput. Struct. Biotechnol. J. 20, 2112–2123 (2022).Article 

Google Scholar 
Wang, Y. et al. Identification of vital chemical information via visualization of graph neural networks. Brief. Bioinform. 24, bbac577 (2023).Orr, S. T. et al. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J. Med. Chem. 55, 4896–4933 (2012).Article 

Google Scholar 
Georgiev, K. D., Hvarchanova, N., Stoychev, E. & Kanazirev, B. Prevalence of polypharmacy and risk of potential drug-drug interactions among hospitalized patients with emphasis on the pharmacokinetics. Sci. Prog. 105, 368504211070183 (2022).Article 

Google Scholar 
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).Article 

Google Scholar 
Preissner, S. et al. SuperCYP: a comprehensive database on cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 38, D237–D243 (2010).Article 

Google Scholar 
Xiong, G. et al. DDInter: an online drug-drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res. 50, D1200–D1207 (2022).Article 

Google Scholar 
Center for Drug Evaluation and Research. New Drug Therapy Approvals 2023 (US FDA, 2023).Kamel, A. & Harriman, S. Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI). Drug Discov. Today Technol. 10, e177–e189 (2013).Article 

Google Scholar 
Loos, N. H. C., Beijnen, J. H. & Schinkel, A. H. The mechanism-based inactivation of CYP3A4 by ritonavir: what mechanism? Int. J. Mol. Sci. 23, 9866 (2022).Article 

Google Scholar 
Rock, B. M., Hengel, S. M., Rock, D. A., Wienkers, L. C. & Kunze, K. L. Characterization of ritonavir-mediated inactivation of cytochrome P450 3A4. Mol. Pharmacol. 86, 665–674 (2014).Article 

Google Scholar 
Wang, Z. et al. Impact of paroxetine, a strong CYP2D6 inhibitor, on SPN-812 (viloxazine extended-release) pharmacokinetics in healthy adults. Clin. Pharmacol. Drug Dev. 10, 1365–1374 (2021).Article 

Google Scholar 
Harbeson, S. L. & Tung, R. D. Deuterium in drug discovery and development. Annu. Rep. Med. Chem. 46, 403–417 (2011).Li, Y. et al. Novel tetrazole-containing analogues of itraconazole as potent antiangiogenic agents with reduced cytochrome P450 3A4 inhibition. J. Med. Chem. 61, 11158–11168 (2018).Article 

Google Scholar 
Shou, M. et al. A kinetic model for the metabolic interaction of two substrates at the active site of cytochrome P450 3A4. J. Biol. Chem. 276, 2256–2262 (2001).Article 

Google Scholar 
Midde, N. M. et al. Effect of ethanol on the metabolic characteristics of HIV-1 integrase inhibitor elvitegravir and elvitegravir/cobicistat with CYP3A: an analysis using a newly developed LC-MS/MS method. PLoS ONE 11, e0149225 (2016).Article 

Google Scholar 
Palovaara, S. et al. Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br. J. Clin. Pharmacol. 50, 333–337 (2000).Article 

Google Scholar 
Guengerich, F. P., Waterman, M. R. & Egli, M. Recent structural insights into cytochrome P450 function. Trends Pharmacol. Sci. 37, 625–640 (2016).Article 

Google Scholar 
Bachmann, P. et al. Prevalence and severity of potential drug-drug interactions in patients with multiple sclerosis with and without polypharmacy. Pharmaceutics 14, 592 (2022).Article 

Google Scholar 
Van De Sijpe, G. et al. Overall performance of a drug-drug interaction clinical decision support system: quantitative evaluation and end-user survey. BMC Med. Inform. Decis. Mak. 22, 48 (2022).Article 

Google Scholar 
Louis, S. Y. et al. Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 22, 18141–18148 (2020).Article 

Google Scholar 
Degen, J., Wegscheid-Gerlach, C., Zaliani, A. & Rarey, M. On the art of compiling and using ‘drug-like’ chemical fragment spaces. ChemMedChem 3, 1503–1507 (2008).Article 

Google Scholar 
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).Article 

Google Scholar 
Han, S. et al. HimGNN: a novel hierarchical molecular graph representation learning framework for property prediction. Brief. Bioinform. 24, bbad305 (2023).Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017).Wu, Z., Liu, Z., Lin, J., Lin, Y. & Han, S. Lite transformer with long-short range attention. In International Conference on Learning Representations (2020).Dwivedi, V. P. & Bresson, X. A generalization of transformer networks to graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and Applications (DLG-AAAI, 2021).Wu, C., Wu, F. & Huang, Y. DA-Transformer: distance-aware transformer. In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 2059–2068 (NAACL 2021).Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 4171–4186 (NAACL 2019).Zhong, Y. et al. DDI-GCN: drug-drug interaction prediction via explainable graph convolutional networks. Artif. Intell. Med. 144, 102640 (2023).Article 

Google Scholar 
Jiang, D. et al. InteractionGraphNet: a novel and efficient deep graph representation learning framework for accurate protein-ligand interaction predictions. J. Med. Chem. 64, 18209–18232 (2021).Article 

Google Scholar 
Abadi, M. TensorFlow: learning functions at scale. In Proc. 21st ACM SIGPLAN International Conference on Functional Programming 1 (ACM, 2016).Landrum, G. RDKit: a software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8, 5281 (2013).
Google Scholar 
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 

Google Scholar 
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).Article 

Google Scholar 
McKinney, W. pandas: a foundational Python library for data analysis and statistics. Python High Perf. Sci. Comput. 14, 1–9 (2011).
Google Scholar 
Kwon, S. & Yoon, S. DeepCCI: end-to-end deep learning for chemical-chemical interaction prediction. In Proc. 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 203–212 (ACM, 2017).Huang, K., Xiao, C., Glass, L. M. & Sun, J. MolTrans: molecular interaction transformer for drug–target interaction prediction. Bioinformatics 37, 830–836 (2021).Article 

Google Scholar 
Pathak, Y., Laghuvarapu, S., Mehta, S. & Priyakumar, U. D. Chemically Interpretable Graph Interaction Network for prediction of pharmacokinetic properties of drug-like molecules. In Proc. AAAI Conference on Artificial Intelligence 873–880 (2020).Lee, N. et al. Conditional Graph Information Bottleneck for molecular relational learning. In International Conference on Machine Learning 18852–18871 (PMLR, 2023).Zhong, Y., Li, G.,Yang, J., Zheng, H., Yu, Y., Zhang, J., Luo, H., Wang, B. & Weng, Z. Learning motif-based graph for drug-drug interaction prediction via local-global self-attention. Code Ocean https://doi.org/10.24433/CO.0704680.v1 (2024).Center for Drug Evaluation and Research. Clinical Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry (US FDA, 2020).

Hot Topics

Related Articles