Hierarchical assembly of tubular frameworks driven by covalent and coordinate bonding

Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagens at a glance. J. Cell Sci. 120, 1955–1958 (2007).Article 
CAS 
PubMed 

Google Scholar 
Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).Article 
CAS 

Google Scholar 
Datta, S., Saha, M. L. & Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 51, 2047–2063 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).Article 
CAS 

Google Scholar 
Ikkala, O. & ten Brinke, G. Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun. 2131–2137 (2004).Rest, C., Kandanelli, R. & Fernández, G. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chem. Soc. Rev. 44, 2543–2572 (2015).Article 
CAS 
PubMed 

Google Scholar 
Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).Article 
CAS 
PubMed 

Google Scholar 
Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).Article 
PubMed 

Google Scholar 
Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).Article 
CAS 
PubMed 

Google Scholar 
Segura, J. L., Mancheño, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).Article 
CAS 
PubMed 

Google Scholar 
Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).Article 
CAS 
PubMed 

Google Scholar 
Veber, G. et al. Reticular growth of graphene nanoribbon 2D covalent organic frameworks. Chem 6, 1125–1133 (2020).Article 
CAS 

Google Scholar 
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).Article 
CAS 

Google Scholar 
Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).Article 
CAS 
PubMed 

Google Scholar 
Chopra, N. G. et al. Boron nitride nanotubes. Science 269, 966–967 (1995).Article 
CAS 
PubMed 

Google Scholar 
Otsubo, K. et al. Bottom-up realization of a porous metal–organic nanotubular assembly. Nat. Mater. 10, 291–295 (2011).Article 
CAS 
PubMed 

Google Scholar 
Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1444 (2005).Article 
CAS 
PubMed 

Google Scholar 
Korde, A. et al. Single-walled zeolitic nanotubes. Science 375, 62–66 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008).Article 
CAS 
PubMed 

Google Scholar 
Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).Article 
CAS 
PubMed 

Google Scholar 
Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).Article 
CAS 
PubMed 

Google Scholar 
Yan, Y. et al. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015).Article 
CAS 
PubMed 

Google Scholar 
Picini, F. et al. Supramolecular polymerization of triarylamine-based macrocycles into electroactive nanotubes. J. Am. Chem. Soc. 143, 6498–6504 (2021).Article 
CAS 
PubMed 

Google Scholar 
Koner, K. et al. Porous covalent organic nanotubes and their assembly in loops and toroids. Nat. Chem. 14, 507–514 (2022).Article 
CAS 
PubMed 

Google Scholar 
Sun, C. et al. High aspect ratio nanotubes assembled from macrocyclic iminium salts. Proc. Natl Acad. Sci. USA 115, 8883–8888 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Strauss, M. J. et al. Lithium-conducting self-assembled organic nanotubes. J. Am. Chem. Soc. 143, 17655–17665 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bong, D. T., Clark, T. D., Granja, J. R. & Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40, 988–1011 (2001).Article 
CAS 

Google Scholar 
Gong, B. & Shao, Z. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Acc. Chem. Res. 46, 2856–2866 (2013).Article 
CAS 
PubMed 

Google Scholar 
Maeda, K. et al. Construction of covalent organic nanotubes by light-induced cross-linking of diacetylene-based helical polymers. J. Am. Chem. Soc. 138, 11001–11008 (2016).Article 
CAS 
PubMed 

Google Scholar 
Strauss, M. J. et al. Divergent nanotube synthesis through reversible macrocycle assembly. Acc. Mater. Res. 3, 935–947 (2022).Article 
CAS 

Google Scholar 
Chaix, A. et al. Trianglamine-based supramolecular organic framework with permanent intrinsic porosity and tunable selectivity. J. Am. Chem. Soc. 140, 14571–14575 (2018).Article 
CAS 
PubMed 

Google Scholar 
Elbert, S. M. et al. Metal-assisted salphen organic frameworks (MaSOFs) with trinuclear metal units for synergic gas sorption. Chem. Mater. 31, 6210–6223 (2019).Article 
CAS 

Google Scholar 
Zhang, D., Ronson, T. K. & Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 51, 2423–2436 (2018).Article 
CAS 
PubMed 

Google Scholar 
Browne, C., Ronson, T. K. & Nitschke, J. R. Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes. Angew. Chem. Int. Ed. 53, 10701–10705 (2014).Article 
CAS 

Google Scholar 
Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, K. et al. Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal–organic cages via metalloligand strategy for guest trapping and protection. J. Am. Chem. Soc. 136, 4456–4459 (2014).Article 
CAS 
PubMed 

Google Scholar 
Nakamura, T., Ube, H., Shiro, M. & Shionoya, M. A self-assembled multiporphyrin cage complex through three different Zinc(II) center formation under well-balanced aqueous conditions. Angew. Chem. Int. Ed. 52, 720–723 (2013).Article 
CAS 

Google Scholar 
Yue, N. L. S., Jennings, M. C. & Puddephatt, R. J. Disilver(I) macrocycles: variation of cavity size with anion binding. Inorg. Chem. 44, 1125–1131 (2005).Article 
CAS 
PubMed 

Google Scholar 
Lozano-Castelló, D., Cazorla-Amorós, D. & Linares-Solano, A. Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons. Carbon 42, 1233–1242 (2004).Article 

Google Scholar 
Luo, Y. et al. High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nat. Chem. 15, 483–490 (2023).CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, B. et al. A single-molecule van der Waals compass. Nature 592, 541–544 (2021).Article 
CAS 
PubMed 

Google Scholar 
Svensson Grape, E. et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat. Water 1, 433–442 (2023).Article 

Google Scholar 
Lazić, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).Article 
PubMed 

Google Scholar 
Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).Article 
CAS 
PubMed 

Google Scholar 
Mu, Z. et al. Covalent organic frameworks with record pore apertures. J. Am. Chem. Soc. 144, 5145–5154 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hussain, A., Chaniago, Y. D., Riaz, A. & Lee, M. Process design alternatives for producing ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate. Ind. Eng. Chem. Res. 58, 2246–2257 (2019).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles