Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne

Strasser, P. Catalysts by Platonic design. Science 349, 379–380 (2015).Article 
ADS 
PubMed 

Google Scholar 
Shi, Z. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 621, 300–305 (2023).Article 
ADS 
PubMed 

Google Scholar 
Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).Article 
ADS 
PubMed 

Google Scholar 
Hui, L. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 144, 1921–1928 (2022).Article 
PubMed 

Google Scholar 
Wei, Z.-W. et al. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 16622–16627 (2021).Article 

Google Scholar 
Yang, Z., Yang, H., Shang, L. & Zhang, T. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction. Angew. Chem. Int. Ed. 61, e202113278 (2022).Article 

Google Scholar 
Gasteiger, H. A. & Marković, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).Article 
ADS 
PubMed 

Google Scholar 
Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).Article 
PubMed 

Google Scholar 
Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).Article 
PubMed 

Google Scholar 
Saleem, F. et al. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 135, 18304–18307 (2013).Article 
PubMed 

Google Scholar 
Xu, X. et al. Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 53, 12522–12527 (2014).Article 

Google Scholar 
Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).Article 
ADS 
PubMed 

Google Scholar 
Nie, Y. et al. Low-electronegativity Mn-contraction of ptmn nanodendrites boosts oxygen reduction durability. Angew. Chem. Int. Ed. 63, e202317987 (2024).Lin, F., Li, M., Zeng, L., Luo, M. & Guo, S. Intermetallic nanocrystals for fuel-cells-based electrocatalysis. Chem. Rev. 123, 12507–12593 (2023).Article 
PubMed 

Google Scholar 
Wang, X., Tang, S., Guo, W., Fu, Y. & Manthiram, A. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Mater. Today 50, 259–275 (2021).Article 

Google Scholar 
Sun, H. et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32, 1806326 (2020).Article 

Google Scholar 
Chen, Y. et al. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis. Angew. Chem. Int. Ed. 62, e202306469 (2023).Article 
ADS 

Google Scholar 
Liu, H. et al. Second sphere effects promote formic acid dehydrogenation by a single-atom gold catalyst supported on amino-substituted graphdiyne. Angew. Chem. Int. Ed. 62, e202216739 (2023).Article 
ADS 

Google Scholar 
Peng, C. et al. Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth(110) facets modified with sulfur-anchored sodium cations. Chem 9, 2830–2840 (2023).Article 

Google Scholar 
Wang, Y., Wang, C., Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).Article 
PubMed 

Google Scholar 
Sun, Y. et al. Fabricating freestanding electrocatalyst with bismuth-iron dual active sites for efficient ammonia synthesis in neutral media. EcoEnergy 1, 186–196 (2023).Article 

Google Scholar 
Zeng, Y. et al. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions. eScience 3, 100156 (2023).Article 

Google Scholar 
Chen, Q. et al. Thiuram monosulfide with ultrahigh redox activity triggered by electrochemical oxidation. J. Am. Chem. Soc. 144, 18918–18926 (2022).Article 
PubMed 

Google Scholar 
Cai, G., Ding, M., Wu, Q. & Jiang, H.-L. Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl. Sci. Rev. 7, 37–45 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 6, 730–738 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, D.-Y., Si, Y., Guo, W. & Fu, Y. Electrosynthesis of 1,4-bis(diphenylphosphanyl) tetrasulfide via sulfur radical addition as cathode material for rechargeable lithium battery. Nat. Commun. 12, 3220 (2021).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).Article 
ADS 
PubMed 

Google Scholar 
Liu, Z. et al. Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 62, e202309319 (2023).Article 
ADS 

Google Scholar 
Rong, X., Wang, H.-J., Lu, X.-L., Si, R. & Lu, T.-B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. Int. Ed. 59, 1961–1965 (2020).Article 

Google Scholar 
Shen, Q. et al. Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions. Angew. Chem. Int. Ed. 59, 1216–1219 (2020).Article 

Google Scholar 
Wei, Y. et al. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2. Angew. Chem. Int. Ed. 61, e202212049 (2022).Article 

Google Scholar 
Lum, Y. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3, 14–22 (2020).Article 

Google Scholar 
Jiao, J. et al. Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction. Nat. Commun. 14, 6164 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).Article 
ADS 
PubMed 

Google Scholar 
Pan, Y. et al. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling. Appl. Catal., B 306, 121111 (2022).Article 

Google Scholar 
Fan, X. et al. Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers. Nat. Electron. 2, 394–404 (2019).Article 

Google Scholar 
Xu, W.-H. et al. Copper nanowires as nanoscale interconnects: their stability, electrical transport, and mechanical properties. ACS Nano 9, 241–250 (2015).Article 
PubMed 

Google Scholar 
Lin, L. et al. Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. Chem 8, 1822–1854 (2022).Article 

Google Scholar 
Gulbransen, E. A., Andrew, K. F. & Brassart, F. A. Oxidation of molybdenum 550° to 1700 °C. J. Electrochem. Soc. 110, 952–959 (1963).Article 
ADS 

Google Scholar 
Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).Article 
ADS 
PubMed 

Google Scholar 
Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).Article 
ADS 
PubMed 

Google Scholar 
Xue, Y. et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 9, 1460 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Hui, L. et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 141, 10677–10683 (2019).Article 
PubMed 

Google Scholar 
Zheng, Z., Qi, L., Xue, Y. & Li, Y. Highly selective and durable of monodispersed metal atoms in ammonia production. Nano Today 43, 101431 (2022).Article 

Google Scholar 
Jia, Y. & Yao, X. Defects in carbon-based materials for electrocatalysis: synthesis, recognition, and advances. Acc. Chem. Res. 56, 948–958 (2023).Article 
PubMed 

Google Scholar 
Yang, Q. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144, 2171–2178 (2022).Article 
PubMed 

Google Scholar 
Wu, Q. et al. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat. Commun. 14, 6275 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, X. et al. Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).Article 
ADS 

Google Scholar 
Zhang, L. et al. Synthesis of graphdiyne hollow spheres and multiwalled nanotubes and applications in water purification and raman sensing. Nano Lett. 23, 3023–3029 (2023).Article 
ADS 
PubMed 

Google Scholar 
Huang, C. et al. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 118, 7744–7803 (2018).Article 
PubMed 

Google Scholar 
Matsuoka, R. et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 139, 3145–3152 (2017).Article 
PubMed 

Google Scholar 
Gao, X. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4, eaat6378 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Zheng, X. et al. Two-dimensional carbon graphdiyne: advances in fundamental and application research. ACS Nano 17, 14309–14346 (2023).Article 
PubMed 

Google Scholar 
Zhang, L. et al. Exploring the fate of copper ions in the synthesis of graphdiyne. Angew. Chem. Int. Ed. 63, e202316936 (2024).Article 

Google Scholar 
Fang, Y., Liu, Y., Qi, L., Xue, Y. & Li, Y. 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 51, 2681–2709 (2022).Article 
PubMed 

Google Scholar 
Du, Y., Zhou, W., Gao, J., Pan, X. & Li, Y. Fundament and application of graphdiyne in electrochemical energy. Acc. Chem. Res. 53, 459–469 (2020).Article 
PubMed 

Google Scholar 
Jia, Z. et al. Synthesis and properties of 2D carbon—graphdiyne. Acc. Chem. Res. 50, 2470–2478 (2017).Article 
PubMed 

Google Scholar 
He, F. & Li, Y. Advances on theory and experiments of the energy applications in graphdiyne. CCS Chem. 5, 72–94 (2023).Article 

Google Scholar 
Zhao, Y. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 10, 924–931 (2018).Article 
PubMed 

Google Scholar 
Zheng, Z., Xue, Y. & Li, Y. A new carbon allotrope: graphdiyne. Trends Chem. 4, 754–768 (2022).Article 

Google Scholar 
Zhang, L. et al. Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity. Nat. Commun. 14, 6318 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shi, G. et al. Constructing Cu−C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew. Chem. Int. Ed. 61, e202203569 (2022).Article 
ADS 

Google Scholar 
Zhang, C., Xue, Y., Zheng, X., Qi, L. & Li, Y. Loaded Cu-Er metal iso-atoms on graphdiyne for artificial photosynthesis. Mater. Today 66, 72–83 (2023).Article 
ADS 

Google Scholar 
Yu, H. et al. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. Natl. Sci. Rev. 8, nwaa213 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zheng, Z. et al. Ir0/graphdiyne atomic interface for selective epoxidation. Natl. Sci. Rev. 10, nwad156 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Fu, X., Zhao, X., Lu, T.-B., Yuan, M. & Wang, M. Graphdiyne-based single-atom catalysts with different coordination environments. Angew. Chem. Int. Ed. 62, e202219242 (2023).Article 

Google Scholar 
Qi, H. et al. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 137, 5260–5263 (2015).Article 
PubMed 

Google Scholar 
Yu, J. et al. Graphdiyne nanospheres as a wettability and electron modifier for enhanced hydrogenation catalysis. Angew. Chem. Int. Ed. 61, e202207255 (2022).Article 

Google Scholar 
Zheng, X. et al. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. Nat. Nanotechnol. 18, 153–159 (2023).Article 
ADS 
PubMed 

Google Scholar 
Luan, X. et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, e202215968 (2023).Article 

Google Scholar 
Qi, L. et al. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation. J. Am. Chem. Soc. 146, 5669–5677 (2024).Article 
PubMed 

Google Scholar 
Gao, Y. et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 13, 5227 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gao, Y., Xue, Y., He, F. & Li, Y. Controlled growth of a high selectivity interface for seawater electrolysis. Proc. Natl. Acad. Sci. USA. 119, e2206946119 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Guo, S. et al. Electron hopping by interfacing semiconducting graphdiyne nanosheets and redox molecules for selective electrocatalysis. J. Am. Chem. Soc. 142, 2074–2082 (2020).Article 
PubMed 

Google Scholar 
Fang, Y. et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. 59, 13021–13027 (2020).Article 

Google Scholar 
Fang, Y., Xue, Y., Hui, L., Yu, H. & Li, Y. Graphdiyne@Janus magnetite for photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 60, 3170–3174 (2021).Article 

Google Scholar 
Lu, C. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 9, 752 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).Article 
ADS 
PubMed 

Google Scholar 

Hot Topics

Related Articles