Multiwell-based G0-PCC assay for radiation biodosimetry

Shuryak, I. et al. A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Sci. Rep. 12, 21077 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Blakely, W. F., Prasanna, P. G., Grace, M. B. & Miller, A. C. Radiation exposure assessment using cytological and molecular biomarkers. Radiat. Prot. Dosimetry 97, 17–23 (2001).Article 
CAS 
PubMed 

Google Scholar 
Testa, A., Palma, V. & Patrono, C. Dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay in the field of biological dosimetry. Methods Mol. Biol. 2031, 105–119 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dainiak, N., Waselenko, J. K., Armitage, J. O., MacVittie, T. J. & Farese, A. M. The hematologist and radiation casualties. Hematol. Am. Soc. Hematol. Educ. Progr. 2003, 473–496 (2003).Article 

Google Scholar 
Waselenko, J. K. et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140, 1037–1051 (2004).Article 
PubMed 

Google Scholar 
Schuening, F. G. et al. Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total body irradiation. Blood 74, 1308–1313 (1989).Article 
CAS 
PubMed 

Google Scholar 
Hofer, M., Pospíšil, M., Komůrková, D. & Hoferová, Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: A concise review. Molecules 19, 4770–4778 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
MacVittie, T. J. et al. The effect of radiation dose and variation in Neupogen® initiation schedule on the mitigation of myelosuppression during the concomitant GI-ARS and H-ARS in a nonhuman primate model of high-dose exposure with marrow sparing. Health Phys. 109, 427–439 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Garty, G. et al. The decade of the RABiT (2005–15). Radiat. Prot. Dosimetry 172, 201–206 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Repin, M., Pampou, S., Karan, C., Brenner, D. J. & Garty, G. RABiT-II: Implementation of a high-throughput micronucleus biodosimetry assay on commercial biotech robotic systems. Radiat. Res. 187, 502–508 (2017).Article 
ADS 

Google Scholar 
Royba, E. et al. RABiT-II-DCA: A fully-automated dicentric chromosome assay in multiwell plates. Radiat. Res. 192, 311–323 (2019).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ravi, M., Nivedita, K. & Pai, G. M. Chromatin condensation dynamics and implications of induced premature chromosome condensation. Biochimie 95, 124–133 (2013).Article 
CAS 
PubMed 

Google Scholar 
Pantelias, A. & Terzoudi, G. I. Development of an automatable micro-PCC biodosimetry assay for rapid individualized risk assessment in large-scale radiological emergencies. Mutat. Res. Toxicol. Environ. Mutagen. 836, 65–71 (2018).Article 
CAS 

Google Scholar 
Yadav, U., Bhat, N. N., Shirsaath, K. B., Mungse, U. S. & Sapra, B. K. Refined premature chromosome condensation (G0-PCC) with cryo-preserved mitotic cells for rapid radiation biodosimetry. Sci. Rep. 11, 13498 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hernansaiz-Ballesteros, R. D., Földi, C., Cardelli, L., Nagy, L. G. & Csikász-Nagy, A. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Sci. Rep. 11, 11122 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Prasanna, P. G. S. & Blakely, W. F. Premature chromosome condensation in human resting peripheral blood lymphocytes for chromosome aberration analysis using specific whole-chromosome DNA hybridization probes. Methods Mol. Biol. 291, 49–57 (2005).CAS 
PubMed 

Google Scholar 
Prasanna, P. G., Escalada, N. D. & Blakely, W. F. Induction of premature chromosome condensation by a phosphatase inhibitor and a protein kinase in unstimulated human peripheral blood lymphocytes: A simple and rapid technique to study chromosome aberrations using specific whole-chromosome DNA hybridization probes. Mutat. Res. Toxicol. Environ. Mutagen. 466, 131–141 (2000).Article 
CAS 

Google Scholar 
Gotoh, E. G2 premature chromosome condensation/chromosome aberration assay: Drug-induced premature chromosome condensation (PCC) protocols and cytogenetic approaches in mitotic chromosome and interphase chromatin for radiation biology. Methods Mol. Biol. 1984, 47–60 (2019).Article 
CAS 
PubMed 

Google Scholar 
Gelens, L., Qian, J., Bollen, M. & Saurin, A. T. The importance of kinase-phosphatase integration: lessons from mitosis. Trends Cell Biol. 28, 6–21 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kishimoto, T. Entry into mitosis: A solution to the decades-long enigma of MPF. Chromosoma 124, 417–428 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hara, M. et al. Greatwall kinase and Cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat. Commun. 3, 1059 (2012).Article 
ADS 
PubMed 

Google Scholar 
Shintomi, K., Takahashi, T. S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014–1023 (2015).Article 
CAS 
PubMed 

Google Scholar 
Shintomi, K. Making mitotic chromosomes in a test tube. Epigenomes 6, 1–13 (2022).Article 

Google Scholar 
Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672–676 (2017).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hirano, T. Condensins: Universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bazile, F., St-Pierre, J. & D’Amours, D. Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle 9, 3263–3275 (2010).Article 

Google Scholar 
Kschonsak, M. & Haering, C. H. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. BioEssays 37, 755–766 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kagami, Y., Ono, M. & Yoshida, K. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci. Rep. 7, 5583 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Tsuji, S. & Kanda, R. Chemically induced premature chromosome condensation in short-term cultured human peripheral lymphocytes: applications to biodosimetry. Biotech. Histochem. 82, 29–34 (2007).Article 
CAS 
PubMed 

Google Scholar 
Sommer, S. et al. The rapid interphase chromosome assay (RICA) implementation: Comparison with other PCC methods. Nukleonika 60, 933–941 (2015).Article 

Google Scholar 
Walev, I. et al. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. 98, 3185–3190 (2001).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Babiychuk, E. B., Monastyrskaya, K., Potez, S. & Draeger, A. Blebbing confers resistance against cell lysis. Cell Death Differ. 18, 80–89 (2011).Article 
CAS 
PubMed 

Google Scholar 
Teng, K. W. et al. Labeling proteins inside living cells using external fluorophores for microscopy. eLife 5, e20378 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Vigneron, S. et al. Cyclin A-cdk1-dependent phosphorylation of bora is the triggering factor promoting mitotic entry. Dev. Cell 45, 637-650.e7 (2018).Article 
CAS 
PubMed 

Google Scholar 
St-Pierre, J. et al. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol. Cell 34, 416–426 (2009).Article 
CAS 
PubMed 

Google Scholar 
Abe, S. et al. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 25, 863–874 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gong, D. & Ferrell, J. E. The roles of Cyclin A2, B1, and B2 in early and late mitotic events. Mol. Biol. Cell 21, 3149–3161 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xin, G. et al. Aurora B regulates PP1γ-Repo-Man interactions to maintain the chromosome condensation state. J. Biol. Chem. 295, 14780–14788 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, Q. & Ruderman, J. V. Aurora A, mitotic entry, and spindle bipolarity. Proc. Natl. Acad. Sci. 103, 5811–5816 (2006).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Mochida, S. & Hunt, T. Protein phosphatases and their regulation in the control of mitosis. EMBO Rep. 13, 197–203 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015).Article 
PubMed 

Google Scholar 
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).Article 

Google Scholar 
Vicar, T. et al. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput. Struct. Biotechnol. J. 19, 6465–6480 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, X. et al. High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network. Sci. Rep. 13, 2124 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jang, S. et al. Feasibility study on automatic interpretation of radiation dose using deep learning technique for dicentric chromosome assay. Radiat. Res. 195(2), 163–172 (2020).Article 

Google Scholar 
Lecun, Y. & Yoshua, B. Convolutional networks for images, speech, and time-series. in The Handbook of Brain Theory and Neural Networks (MIT Press, 1995).LeCun, Y., Kavukcuoglu, K. & Farabet, C. Convolutional networks and applications in vision. in Proceedings of 2010 IEEE International Symposium on Circuits and Systems 253–256 (IEEE, 2010).Satyamitra, M. M. et al. The NIAID/RNCP biodosimetry program: An overview. Cytogenet. Genome Res. 163, 89–102 (2023).Article 
PubMed 

Google Scholar 
Simon, S. L., Bouville, A. & Kleinerman, R. Current use and future needs of biodosimetry in studies of long-term health risk following radiation exposure. Health Phys. 98, 109–117 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoffmeyer, M. R., Gillis, K., Park, J. G., Murugan, V. & LaBaer, J. Making the case for absorbed radiation response biodosimetry—Utility of a high-throughput biodosimetry system. Radiat. Res. 196, 535–546 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist 8th edn. (Wolters Kluwer, 2019).
Google Scholar 
Garty, G., Karam, A. & Brenner, D. J. Infrastructure to support ultra-high-throughput biodosimetry screening after a radiological event. Int. J. Radiat. Biol. 87, 754–765 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Grace, M. B. et al. Rapid radiation dose assessment for radiological public health emergencies: roles of NIAID and BARDA. Health Phys. 98, 172–178 (2010).Article 
CAS 
PubMed 

Google Scholar 
Morana, S. J. et al. The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis. J. Biol. Chem. 271, 18263–18271 (1996).Article 
CAS 
PubMed 

Google Scholar 
Royba, E. et al. Validation of a high-throughput dicentric chromosome assay using complex radiation exposures. Radiat. Res. 199(1), 1–16 (2022).Article 
ADS 

Google Scholar 
M’Kacher, R. et al. High resolution and automatable cytogenetic biodosimetry using in situ telomere and centromere hybridization for the accurate detection of DNA damage: An overview. Int. J. Mol. Sci. 24, 5699 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Terzoudi, G. I. et al. Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay). Int. J. Radiat. Biol. 93, 48–57 (2017).Article 
CAS 
PubMed 

Google Scholar 
Güttinger, S., Laurell, E. & Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178–191 (2009).Article 
PubMed 

Google Scholar 
Ghosh, S., Paweletz, N. & Schroeter, D. Failure of kinetochore development and mitotic spindle formation in okadaic acid-induced premature mitosis in HeLa cells. Exp. Cell Res. 201, 535–540 (1992).Article 
CAS 
PubMed 

Google Scholar 
Pines, J. & Hunter, T. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58, 833–846 (1989).Article 
CAS 
PubMed 

Google Scholar 
Brown, N. R. et al. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat. Commun. 6, 6769 (2015).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).Article 
CAS 
PubMed 

Google Scholar 
Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889–a003889 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Pennarun, G., Picotto, J. & Bertrand, P. Close ties between the nuclear envelope and mammalian telomeres: Give me shelter. Genes (Basel). 14, 775 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Crabbe, L., Cesare, A. J., Kasuboski, J. M., Fitzpatrick, J. A. J. & Karlseder, J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep. 2, 1521–1529 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hatzi, V. I. et al. The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material. Sci. World J. 6, 1174–1190 (2006).Article 

Google Scholar 
Heng, H. H. Q. et al. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet. Genome Res. 139, 144–157 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kimura, K., Rybenkov, V. V., Crisona, N. J., Hirano, T. & Cozzarelli, N. R. 13S condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation. Cell 98, 239–248 (1999).Article 
CAS 
PubMed 

Google Scholar 
Kimura, K. & Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: A biochemical implication for chromosome condensation. Cell 90, 625–634 (1997).Article 
CAS 
PubMed 

Google Scholar 
Kanda, R., Eguchi-Kasai, K. & Hayata, I. Phosphatase inhibitors and premature chromosome condensation in human peripheral lymphocytes at different cell-cycle phases. Somat. Cell Mol. Genet. 25, 1–8 (1999).Article 
CAS 
PubMed 

Google Scholar 
Lorat, Y. et al. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy—The heavy burden to repair. DNA Repair (Amst). 28, 93–106 (2015).Article 
CAS 
PubMed 

Google Scholar 
Genzen, J. R., Mohlman, J. S., Lynch, J. L., Squires, M. W. & Weiss, R. L. Laboratory-developed tests: A legislative and regulatory review. Clin. Chem. 63, 1575–1584 (2017).Article 
CAS 
PubMed 

Google Scholar 
Liu, C. et al. A comparison of chromosome repair kinetics in G0 and G1 reveals that enhanced repair fidelity under noncycling conditions accounts for increased potentially lethal damage repair. Radiat. Res. 174, 566–573 (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Hu, Q. et al. Resting T cells are hypersensitive to DNA damage due to defective DNA repair pathway. Cell Death Dis. 9, 662 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Pathak, R., Ramakumar, A., Subramanian, U. & Prasanna, P. G. Differential radio-sensitivities of human chromosomes 1 and 2 in one donor in interphase- and metaphase-spreads after 60Co γ-irradiation. BMC Med. Phys. 9, 6 (2009).Article 
PubMed 
PubMed Central 

Google Scholar 
Gao, L., Lu, X., Liu, M.-M., Li, S. & Liu, Q.-J. Transformed cell ratio (TCR): A novel parameter for radiation dose estimation in rapid premature chromosome condensation (PCC) assay induced by 0–40 Gy Co-60 Gamma Rays. Health Phys. 123, 492–496 (2022).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles