Probing intermediate configurations of oxygen evolution catalysis across the light spectrum

Busch, M. et al. Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).Article 

Google Scholar 
Abb, M. J. S., Weber, T., Glatthaar, L. & Over, H. Growth of ultrathin single-crystalline IrO2(110) films on a TiO2(110) single crystal. Langmuir 35, 7720–7726 (2019).Article 

Google Scholar 
Reiser, C., Keßler, P., Kamp, M., Jovic, V. & Moser, S. Specific capacitance of RuO2(110) depends sensitively on surface order. J. Phys. Chem. C 127, 3682–3688 (2023).Article 

Google Scholar 
Weber, T. et al. Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11, 12651–12660 (2021).Article 

Google Scholar 
Kuo, D.-Y. et al. Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139, 3473–3479 (2017).Article 

Google Scholar 
Kuo, D.-Y. et al. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 140, 17597–17605 (2018).Article 

Google Scholar 
Keilbart, N., Okada, Y. & Dabo, I. Probing the pseudocapacitance and energy-storage performance of RuO2 facets from first principles. Phys. Rev. Mater. 3, 085405 (2019).Article 

Google Scholar 
Karlberg, G. S. et al. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys. Rev. Lett. 99, 126101 (2007).Article 

Google Scholar 
Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).Article 

Google Scholar 
Pfeifer, V. et al. Reactive oxygen species in iridium-based OER catalysts. Chem. Sci. 7, 6791–6795 (2016).Article 

Google Scholar 
Hrbek, T., Kús, P., Rodriguez, M. G., Matolin, V. & Matolínová, I. Operando X-ray photoelectron spectroscopy cell for water electrolysis: a complete picture of iridium electronic structure during oxygen evolution reaction. Int. J. Hydrog. Energy 57, 187–197 (2024).Article 

Google Scholar 
Pedersen, A. F. et al. Operando XAS study of the surface oxidation state on a monolayer IrOx on RuOx and Ru oxide based nanoparticles for oxygen evolution in acidic media. J. Phys. Chem. B 122, 878–887 (2018).Article 

Google Scholar 
Che, Q. et al. In situ X-ray absorption spectroscopy of LaFeO3 and LaFeO3/LaNiO3 thin films in the electrocatalytic oxygen evolution reaction. J. Phys. Chem. C 128, 5515–5523 (2024).Article 

Google Scholar 
Axnanda, S. et al. Using ‘tender’ X-ray ambient pressure X-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015).Article 

Google Scholar 
Favaro, M. et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A 5, 11634–11643 (2017).Article 

Google Scholar 
Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).Article 

Google Scholar 
Aydogan Gokturk, P. et al. The Donnan potential revealed. Nat. Commun. 13, 5880 (2022).Article 

Google Scholar 
Lichterman, M. F. et al. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409–2416 (2015).Article 

Google Scholar 
Fenter, P. et al. Electrical double-layer structure at the rutile–water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci. 225, 154–165 (2000).Article 

Google Scholar 
Rao, R. R. et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637 (2017).Article 

Google Scholar 
Qian, J., Baskin, A., Liu, Z., Prendergast, D. & Crumlin, E. J. Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement. J. Chem. Phys. 153, 044709 (2020).Article 

Google Scholar 
Lyle, H., Singh, S., Paolino, M., Vinogradov, I. & Cuk, T. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Phys. Chem. Chem. Phys. 23, 24984–25002 (2021).Article 

Google Scholar 
Vinogradov, I. et al. Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. Nat. Mater. 21, 88–94 (2022).Article 

Google Scholar 
Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).Article 

Google Scholar 
Righi, G. et al. On the origin of multihole oxygen evolution in haematite photoanodes. Nat. Catal. 5, 888–899 (2022).Article 

Google Scholar 
Risch, M. et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 8, 661–674 (2015).Article 

Google Scholar 
Reticcioli, M., Diebold, U. & Franchini, C. Modeling polarons in density functional theory: lessons learned from TiO2. J. Phys. Condens. Matter 34, 204006 (2022).Article 

Google Scholar 
De Lile, J. R., Bahadoran, A., Zhou, S. & Zhang, J. Polaron in TiO2 from first-principles: a review. Adv. Theory Simul. 5, 2100244 (2022).Article 

Google Scholar 
Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).Article 

Google Scholar 
Li, Y.-F. & Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 6, 4769–4774 (2016).Article 

Google Scholar 
Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).Article 

Google Scholar 
Dabo, I., Kozinsky, B., Singh-Miller, N. E. & Marzari, N. Electrostatics in periodic boundary conditions and real-space corrections. Phys. Rev. B 77, 115139 (2008).Article 

Google Scholar 
Thatribud, A. Electronic and optical properties of TiO2 by first-principle calculation (DFT-GW and BSE). Mater. Res. Express 6, 095021 (2019).Article 

Google Scholar 
Janotti, A., Varley, J. B., Choi, M. & Van de Walle, C. G. Vacancies and small polarons in SrTiO3.Phys. Rev. B 90, 085202 (2014).Article 

Google Scholar 
Herlihy, D. M. et al. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549–555 (2016).Article 

Google Scholar 
Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).Article 

Google Scholar 
Zhang, M. & Frei, H. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu. Rev. Phys. Chem. 68, 209–231 (2017).Article 

Google Scholar 
Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016).Article 

Google Scholar 
Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation models. J. Chem. Phys. 150, 041730 (2019).Article 

Google Scholar 
Andreussi, O., Dabo, I. & Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136, 064102 (2012).Article 

Google Scholar 
Sundararaman, R., Goddard, W. A. III & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).Article 

Google Scholar 
Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).Article 

Google Scholar 
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).Article 

Google Scholar 
Chen, B. W. J., Zhang, X. & Zhang, J. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials. Chem. Sci. 14, 8338–8354 (2023).Article 

Google Scholar 
Chen, X. et al. The formation time of Ti–O• and Ti–O•–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).Article 

Google Scholar 
Singh, S. et al. Coherent acoustic interferometry during the photodriven oxygen evolution reaction associates strain fields with the reactive oxygen intermediate (Ti–OH*). J. Am. Chem. Soc. 143, 15984–15997 (2021).Article 

Google Scholar 
Chen, X., Aschaffenburg, D. J. & Cuk, T. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat. Catal. 2, 820–827 (2019).Article 

Google Scholar 
Sit, P. H. L., Cococcioni, M. & Marzari, N. Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics. Phys. Rev. Lett. 97, 028303 (2006).Article 

Google Scholar 
Marcus, R. A. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J. Chem. Phys. 24, 979–989 (2004).Article 

Google Scholar 
Fraggedakis, D. et al. Theory of coupled ion-electron transfer kinetics. Electrochim. Acta 367, 137432 (2021).Article 

Google Scholar 
Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).Article 

Google Scholar 
Bredenbeck, J., Helbing, J., Kolano, C. & Hamm, P. Ultrafast 2D-IR spectroscopy of transient species. ChemPhysChem 8, 1747–1756 (2007).Article 

Google Scholar 
Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).Article 

Google Scholar 
Mucha, N. R. et al. High-performance titanium oxynitride thin films for electrocatalytic water oxidation. ACS Appl. Energy Mater. 3, 8366–8374 (2020).Article 

Google Scholar 
Roy, M. et al. Modulation of structural, electronic, and optical properties of titanium nitride thin films by regulated in situ oxidation. ACS Appl. Mater. Interfaces 15, 4733–4742 (2023).Article 

Google Scholar 
Neppl, S. & Gessner, O. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics. J. Electron. Spectrosc. Relat. Phenom. 200, 64–77 (2015).Article 

Google Scholar 
Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3, 264–282 (2021).Article 

Google Scholar 
Husek, J., Cirri, A., Biswas, S. & Baker, L. R. Surface electron dynamics in hematite (α-Fe2O3): correlation between ultrafast surface electron trapping and small polaron formation. Chem. Sci. 8, 8170–8178 (2017).Article 

Google Scholar 
Wagstaffe, M. et al. Photoinduced dynamics at the TiO2(101) interface.Phys. Rev. Lett. 130, 108001 (2023).Article 

Google Scholar 
Hu, B., Kuo, D.-Y., Paik, H., Schlom, D. G. & Suntivich, J. Enthalpy and entropy of oxygen electroadsorption on RuO2(110) in alkaline media. J. Chem. Phys. 152, 094704 (2020).Article 

Google Scholar 

Hot Topics

Related Articles