Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials

Rudola, A., Sayers, R., Wright, C. J. & Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 8, 215–218 (2023).Article 

Google Scholar 
Hu, Y.-S. & Li, Y. Unlocking sustainable Na-ion batteries into industry. ACS Energy Lett. 6, 4115–4117 (2021).Article 

Google Scholar 
Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).Article 

Google Scholar 
Rudola, A. et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9, 8279–8302 (2021).Article 

Google Scholar 
Liang, X., Hwang, J. & Sun, Y. Practical cathodes for sodium‐ion batteries: who will take the crown? Adv. Energy Mater. 13, 2301975 (2023).Article 

Google Scholar 
Liu, J., Kan, W. H. & Ling, C. D. Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: structural evolution and anion redox. J. Power Sources 481, 229139 (2021).Article 

Google Scholar 
Zheng, J., Ye, Y. & Pan, F. ‘Structure units’ as material genes in cathode materials for lithium-ion batteries. Natl Sci. Rev. 7, 242–245 (2020).Article 

Google Scholar 
Yu, T., Ryu, H., Han, G. & Sun, Y. Understanding the capacity fading mechanisms of O3‐type Na[Ni0.5Mn0.5]O2 cathode for sodium‐ion batteries. Adv. Energy Mater. 10, 2001609 (2020).Article 

Google Scholar 
Xu, G.-L. et al. Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nat. Commun. 13, 436 (2022).Article 

Google Scholar 
Li, Y. et al. Degradation by kinking in layered cathode materials. ACS Energy Lett. 6, 3960–3969 (2021).Article 

Google Scholar 
Song, J. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020).Article 

Google Scholar 
Guo, S., Li, Q., Liu, P., Chen, M. & Zhou, H. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat. Commun. 8, 135 (2017).Article 

Google Scholar 
Ding, F. et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).Article 

Google Scholar 
Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. High‐entropy layered oxide cathodes for sodium‐ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).Article 

Google Scholar 
Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13, 2826 (2022).Article 

Google Scholar 
Yao, L. et al. High‐entropy and superstructure‐stabilized layered oxide cathodes for sodium‐ion batteries. Adv. Energy Mater. 12, 2201989 (2022).Article 

Google Scholar 
Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).Article 

Google Scholar 
Zhang, R. et al. Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry. Nat. Energy 8, 695–702 (2023).Article 

Google Scholar 
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).Article 

Google Scholar 
Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).Article 

Google Scholar 
Yang, B. et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023).Article 

Google Scholar 
Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).Article 

Google Scholar 
Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).Article 

Google Scholar 
Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).Article 

Google Scholar 
Luo, D. et al. A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8, 1078–1087 (2023).Article 

Google Scholar 
House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).Article 

Google Scholar 
Yao, H.-R. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 139, 8440–8443 (2017).Article 

Google Scholar 
Xiao, Y. et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode. Adv. Mater. 30, 1803765 (2018).Article 

Google Scholar 
Ding, F. et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).Article 

Google Scholar 
Wang, K. et al. Dopant segregation boosting high‐voltage cyclability of layered cathode for sodium ion batteries. Adv. Mater. 31, 1904816 (2019).Article 

Google Scholar 
Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).Article 

Google Scholar 
Yan, P. et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017).Article 

Google Scholar 
Hüe, F., Hÿtch, M., Bender, H., Houdellier, F. & Claverie, A. Direct mapping of strain in a strained silicon transistor by high-resolution electron microscopy. Phys. Rev. Lett. 100, 156602 (2008).Article 

Google Scholar 
Zhu, Y., Ophus, C., Ciston, J. & Wang, H. Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Mater. 61, 5646–5663 (2013).Article 

Google Scholar 
Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).Article 

Google Scholar 
Usiskin, R. et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 6, 1020–1035 (2021).Article 

Google Scholar 
Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021).Article 

Google Scholar 
Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).Article 

Google Scholar 
Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).Article 

Google Scholar 
Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).Article 

Google Scholar 
Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).Article 

Google Scholar 
Davies, P. K. & Navrotsky, A. Thermodynamics of solid solution formation in NiO–MgO and NiO–ZnO. J. Solid State Chem. 38, 264–276 (1981).Article 

Google Scholar 
Ding, F. et al. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes. J. Am. Chem. Soc. 145, 13592–13602 (2023).Article 

Google Scholar 
Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).Article 

Google Scholar 
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).Article 

Google Scholar 
Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).Article 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 

Google Scholar 
Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004).Article 

Google Scholar 
Farnesi Camellone, M. & Marx, D. On the impact of solvation on a Au/TiO2 nanocatalyst in contact with water. J. Phys. Chem. Lett. 4, 514–518 (2013).Article 

Google Scholar 
Xiao, R., Li, H. & Chen, L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5, 14227 (2015).Article 

Google Scholar 
Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design. Phys. Status Solidi A 208, 1746–1753 (2011).Article 

Google Scholar 

Hot Topics

Related Articles