Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions

Kim, J., Ghaffari, R. & Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1, 0049 (2017).Article 

Google Scholar 
Lundstrom, M. Moore’s law forever? Science 299, 210–211 (2003).Article 
CAS 
PubMed 

Google Scholar 
Toumey, C. Less is Moore. Nat. Nanotechnol. 11, 2–3 (2016).Article 
CAS 
PubMed 

Google Scholar 
Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).Article 
CAS 
PubMed 

Google Scholar 
Meng, L. et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 13, 1410 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, T., Bandari, V. K. & Schmidt, O. G. Molecular electronics: creating and bridging molecular junctions and promoting its commercialization. Adv. Mater. 35, 2209088 (2023).Article 
CAS 

Google Scholar 
Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).Article 
CAS 

Google Scholar 
Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).Article 
PubMed 

Google Scholar 
Zou, Q., Qiu, J., Zang, Y., Tian, H. & Venkataraman, L. Modulating single-molecule charge transport through external stimulus. eScience 3, 100115 (2023).Article 

Google Scholar 
Li, T., Hu, W. & Zhu, D. Nanogap electrodes. Adv. Mater. 22, 286–300 (2010).Article 
PubMed 

Google Scholar 
Luo, S., Hoff, B. H., Maier, S. A. & de Mello, J. C. Scalable fabrication of metallic nanogaps at the sub-10 nm level. Adv. Sci. 8, 2102756 (2021).Article 
CAS 

Google Scholar 
Chang, S., He, J., Zhang, P., Gyarfas, B. & Lindsay, S. Gap distance and interactions in a molecular tunnel junction. J. Am. Chem. Soc. 133, 14267–14269 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McNaught, A. D. & Wilkinson, A. Compendium of Chemical Terminology Vol. 1669 (Blackwell Science, 1997).Cai, Z. et al. Exceptional single-molecule transport properties of ladder-type heteroacene molecular wires. J. Am. Chem. Soc. 138, 10630–10635 (2016).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Ladder-type conjugated molecules as robust multi-state single-molecule switches. Chem 9, 2282–2297 (2023).Moore, J. S. Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 30, 402–413 (1997).Article 
CAS 

Google Scholar 
Cao, Z., Leng, M., Cao, Y., Gu, X. & Fang, L. How rigid are conjugated non-ladder and ladder polymers? J. Polym. Sci. 60, 298–310 (2022).Article 
CAS 

Google Scholar 
Ikai, T. et al. Triptycene-based ladder polymers with one-handed helical geometry. J. Am. Chem. Soc. 141, 4696–4703 (2019).Article 
CAS 
PubMed 

Google Scholar 
Liu, X., Zhu, C. & Tang, B. Z. Bringing inherent charges into aggregation-induced emission research. Acc. Chem. Res. 55, 197–208 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wan, X., Li, C., Zhang, M. & Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chem. Soc. Rev. 49, 2828–2842 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, Z. et al. Understanding the conductance dispersion of single-molecule junctions. J. Phys. Chem. C 125, 3406–3414 (2021).Article 
CAS 

Google Scholar 
Ji, X. et al. Pauli paramagnetism of stable analogues of pernigraniline salt featuring ladder-type constitution. J. Am. Chem. Soc. 142, 641–648 (2020).Article 
CAS 
PubMed 

Google Scholar 
Maekawa, T., Ueno, H., Segawa, Y., Haley, M. M. & Itami, K. Synthesis of open-shell ladder π-systems by catalytic C–H annulation of diarylacetylenes. Chem. Sci. 7, 650–654 (2016).Article 
CAS 
PubMed 

Google Scholar 
Babel, A. & Jenekhe, S. A. High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003).Article 
CAS 
PubMed 

Google Scholar 
Teo, Y. C., Lai, H. W. H. & Xia, Y. Synthesis of ladder polymers: developments, challenges, and opportunities. Chem. Eur. J. 23, 14101–14112 (2017).Article 
CAS 
PubMed 

Google Scholar 
Lee, J., Kalin, A. J., Yuan, T., Al-Hashimi, M. & Fang, L. Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cai, Z., Awais, M. A., Zhang, N. & Yu, L. Exploration of syntheses and functions of higher ladder-type π-conjugated heteroacenes. Chem 4, 2538–2570 (2018).Article 
CAS 

Google Scholar 
Huang, C., Rudnev, A. V., Hong, W. & Wandlowski, T. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).Article 
CAS 
PubMed 

Google Scholar 
Li, L. et al. Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nat. Chem. 14, 1061–1067 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, J., Huang, X., Wang, F. & Hong, W. Quantum interference effects in charge transport through single-molecule junctions: detection, manipulation, and application. Acc. Chem. Res. 52, 151–160 (2019).Article 
CAS 
PubMed 

Google Scholar 
Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).Article 
CAS 

Google Scholar 
Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).Article 
CAS 
PubMed 

Google Scholar 
Dantus, M., Bowman, R. M. & Zewail, A. H. Femtosecond laser observations of molecular vibration and rotation. Nature 343, 737–739 (1990).Article 
CAS 

Google Scholar 
Feng, A. et al. σ–σ Stacked supramolecular junctions. Nat. Chem. 14, 1158–1164 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Achieving multiple quantum-interfered states via through-space and through-bond synergistic effect in foldamer-based single-molecule junctions. J. Am. Chem. Soc. 144, 8073–8083 (2022).Article 
CAS 
PubMed 

Google Scholar 
Lee, W. et al. Increased molecular conductance in oligo[n]phenylene wires by thermally enhanced dihedral planarization. Nano Lett. 22, 4919–4924 (2022).Article 
CAS 
PubMed 

Google Scholar 
Yu, H. et al. Efficient intermolecular charge transport in π-stacked pyridinium dimers using cucurbit[8]uril supramolecular complexes. J. Am. Chem. Soc. 144, 3162–3173 (2022).Article 
CAS 
PubMed 

Google Scholar 
Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).Article 
CAS 
PubMed 

Google Scholar 
Yao, X., Sun, X., Lafolet, F. & Lacroix, J.-C. Long-range charge transport in diazonium-based single-molecule junctions. Nano Lett. 20, 6899–6907 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kadam, V. D. et al. Cascade C–H annulation reaction of benzaldehydes, anilines, and alkynes toward dibenzo[a,f]quinolizinium salts: discovery of photostable mitochondrial trackers at the nanomolar level. Org. Lett. 20, 7071–7075 (2018).Article 
CAS 
PubMed 

Google Scholar 
Capozzi, B. et al. Length-dependent conductance of oligothiophenes. J. Am. Chem. Soc. 136, 10486–10492 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kamenetska, M. et al. Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102, 126803 (2009).Article 
CAS 
PubMed 

Google Scholar 
Rascón-Ramos, H., Artés, J. M., Li, Y. & Hihath, J. Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 14, 517–522 (2015).Article 
PubMed 

Google Scholar 
Adak, O. et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 15, 4143–4149 (2015).Article 
CAS 
PubMed 

Google Scholar 
Stefani, D. et al. Conformation-dependent charge transport through short peptides. Nanoscale 13, 3002–3009 (2021).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 143, 2886–2895 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, J. et al. Reversible switching of molecular conductance in viologens is controlled by the electrochemical environment. J. Phys. Chem. C 125, 21862–21872 (2021).Article 
CAS 

Google Scholar 
Yang, J. S.-J. & Fang, L. Conjugated ladder polymers: advances from syntheses to applications. Chem 10, 1668–1724 (2024).Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).Article 

Google Scholar 
José, M. S. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).Article 

Google Scholar 
Papior, N., Lorente, N., Frederiksen, T., García, A. & Brandbyge, M. Improvements on non-equilibrium and transport Green function techniques: the next-generation transiesta. Comput. Phys. Commun. 212, 8–24 (2017).Article 
CAS 

Google Scholar 
Bai, J. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 18, 364–369 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y. et al. Regio- and steric effects on single molecule conductance of phenanthrenes. Nano Lett. 21, 10333–10340 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gómez-Gallego, M., Martín-Ortiz, M. & Sierra, M. A. Concerning the electronic control of torsion angles in biphenyls. Eur. J. Org. Chem. 2011, 6502–6506 (2011).Article 

Google Scholar 
Yin, J. et al. Acyl radical to rhodacycle addition and cyclization relay to access butterfly flavylium fluorophores. Nat. Commun. 10, 5664 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Frisch, M. et al. Gaussian 16, revision C.01 (Gaussian, Inc., 2019).Becke, A. D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys. 98, 1372–1377 (1993).Article 
CAS 

Google Scholar 
Becke, A. D. Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992).Article 
CAS 

Google Scholar 
Becke, A. D. Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. J. Chem. Phys. 97, 9173–9177 (1992).Article 
CAS 

Google Scholar 
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
CAS 

Google Scholar 
Becke, A. D. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J. Chem. Phys. 104, 1040–1046 (1996).Article 
CAS 

Google Scholar 
Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (2008).Article 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).Article 
PubMed 

Google Scholar 
Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).Article 
CAS 

Google Scholar 
Hratchian, H. P. & Schlegel, H. B. in Theory and Applications of Computational Chemistry (eds Dykstra, C. E. et al.) 195–249 (Elsevier, 2005).Brisendine, J. M. et al. Probing charge transport through peptide bonds. J. Phys. Chem. Lett. 9, 763–767 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 
PubMed 

Google Scholar 
Liu, X. et al. Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions. figshare https://doi.org/10.6084/m9.figshare.26314444 (2024).

Hot Topics

Related Articles