Photo-induced decarboxylative C-S bond formation to access sterically hindered unsymmetric S-alkyl thiosulfonates and SS-alkyl thiosulfonates

Deslauriers, R. & Somorjai, R. L. Internal rotations of side chains and backbone in luteinizing hormone-releasing hormone (LH-RH). Analysis of carbon-13 spin-lattice relaxation times. J. Am. Chem. Soc. 98, 1931–1939 (1976).Article 
PubMed 

Google Scholar 
Lin, G.-Q., Xu, M.-H., Zhong, Y.-W. & Sun, X.-W. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines. Acc. Chem. Res. 41, 831–840 (2008).Article 
PubMed 

Google Scholar 
D’Angelo, N. D. et al. Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J. Med. Chem. 54, 1789–1811 (2011).Article 
PubMed 

Google Scholar 
Jiang, C.-S., Müller, W. E. G., Schröder, H. C. & Guo, Y.-W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev. 112, 2179–2207 (2012).Article 
PubMed 

Google Scholar 
Omann, L., Königs, C. D. F., Klare, H. F. T. & Oestreich, M. Cooperative catalysis at metal–sulfur bonds. Acc. Chem. Res. 50, 1258–1269 (2017).Article 
PubMed 

Google Scholar 
Wang, N., Saidhareddy, P. & Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 37, 246–275 (2020).Article 
PubMed 

Google Scholar 
Kim, J. K., Bonicamp, J. & Caserio, M. C. Methoxymethyl cations. 2. Reactions with allylic ethers and sulfides in the gas phase. J. Org. Chem. 46, 4236–4242 (1981).Article 

Google Scholar 
Mahieu, J.-P., Gosselet, M., Sebille, B. & Beuzard, Y. Synthesis of new thiosulfonates and disulfides from sulfonyl chlorides and thiols. Synth. Commun. 16, 1709–1722 (1986).Article 

Google Scholar 
Chauhan, P., Mahajan, S. & Enders, D. Organocatalytic carbon-sulfur bond-forming reactions. Chem. Rev. 114, 8807–8864 (2014).Article 
PubMed 

Google Scholar 
Musiejuk, M. & Witt, D. Recent developments in the synthesis of unsymmetrical disulfanes (disulfides). A review. Org. Prep. Proced. Int. 47, 95–131 (2015).Article 

Google Scholar 
Wu, Q., Zhao, D., Qin, X., Lan, J. & You, J. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem. Commun. 47, 9188–9190 (2011).Article 

Google Scholar 
Ge, W. & Wei, Y. Copper(I) iodide catalyzed 3-sulfenylation of indoles with unsymmetric benzothiazolyl-containing disulfides at room temperature. Synthesis 44, 934–940 (2012).Article 

Google Scholar 
Yang, F.-L. & Tian, S.-K. Iodine-catalyzed regioselective sulfenylation of indoles with sulfonyl hydrazides. Angew. Chem. Int. Ed. 52, 4929–4932 (2013).Article 

Google Scholar 
Rao, H. et al. K2S2O8/arenesulfinate: an unprecedented thiolating system enabling selective sulfenylation of indoles under metal-free conditions. RSC Adv. 4, 49165–49169 (2014).Article 
ADS 

Google Scholar 
Kumaraswamy, G., Raju, R. & Narayanarao, V. Metal- and base-free syntheses of aryl/alkylthioindoles by the iodine-induced reductive coupling of aryl/alkyl sulfonyl chlorides with indoles. RSC Adv. 5, 22718–22723 (2015).Article 
ADS 

Google Scholar 
Liu, C.-R. & Ding, L.-H. Byproduct promoted regioselective sulfenylation of indoles with sulfinic acids. Org. Biomol. Chem. 13, 2251–2254 (2015).Article 
PubMed 

Google Scholar 
Weidner, J. P. & Block, S. S. Alkyl and aryl thiolsulfonates. J. Med. Chem. 7, 671–673 (1964).Article 
PubMed 

Google Scholar 
Zefirov, N. S., Zyk, N. V., Beloglazkina, E. K. & Kutateladze, A. G. Thiosulfonates: synthesis, reactions and practical applications. Sulfur Rep. 14, 223–240 (1993).Article 

Google Scholar 
Steudel, R. The chemistry of organic polysulfanes R-Sn-R (n > 2). Chem. Rev. 102, 3905–3946 (2002).Article 
PubMed 

Google Scholar 
Kim, S., Kim, S., Otsuka, N. & Ryu, I. Tin-free radical carbonylation: thiol ester synthesis using alkyl allyl sulfone precursors, phenyl benzenethiosulfonate, and CO. Angew. Chem. Int. Ed. 44, 6183–6186 (2005).Article 

Google Scholar 
Mampuys, P. et al. Sustainable three-component synthesis of isothioureas from isocyanides, thiosulfonates, and amines. Angew. Chem. Int. Ed. 53, 12849–12854 (2014).Article 

Google Scholar 
Mai, S. & Song, Q. Divergent synthesis of disulfanes and benzenesulfonothioates bearing 2-aminofurans from N-tosylhydrazone-bearing thiocarbamates. Angew. Chem. Int. Ed. 56, 7952–7957 (2017).Article 

Google Scholar 
Javitch, J. A., Li, X., Kaback, J. & Karlin, A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl Acad. Sci. 91, 10355–10359 (1994).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Gallardo-Godoy, A., Torres-Altoro, M. I., White, K. J., Barker, E. L. & Nichols, D. E. 1-Methylpyridinium-4-(4-phenylmethanethiosulfonate) iodide, MTS-MPP+, a novel scanning cysteine accessibility method (SCAM) reagent for monoamine transporter studies. Bioorg. Med. Chem. 15, 305–311 (2007).Article 
PubMed 

Google Scholar 
Sugata, K. et al. Nucleotide-induced flexibility change in neck linkers of dimeric kinesin as detected by distance measurements using spin-labeling EPR. J. Mol. Biol. 386, 626–636 (2009).Article 
PubMed 

Google Scholar 
Ge, C. et al. A thiol-thiosulfonate reaction providing a novel strategy for turn-on thiol sensing. Chem. Commun. 51, 14913–14916 (2015).Article 

Google Scholar 
Kutateladze, A. G., Beloglazkina, E. K., Zyk, N. V. & Zefirov, N. S. S-tosylsulfene chloride—the first representative of a new class of sulfene halides. Russ. Chem. Bull. 41, 960–961 (1992).Article 

Google Scholar 
Sotirova, A. et al. The importance of rhamnolipid-biosurfactant-induced changes in bacterial membrane lipids of bacillus subtilis for the antimicrobial activity of thiosulfonates. Curr. Microbiol. 65, 534–541 (2012).Article 
PubMed 

Google Scholar 
Selvam, B., Mittal, S. & Shukla, D. Free energy landscape of the complete transport cycle in a key bacterial transporter. ACS Cent. Sci. 4, 1146–1154 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Ward, D. J., Van de Langemheen, H., Koehne, E., Kreidenweiss, A. & Liskamp, R. M. J. Highly tunable thiosulfonates as a novel class of cysteine protease inhibitors with anti-parasitic activity against Schistosoma mansoni. Bioorg. Med. Chem. 27, 2857–2870 (2019).Article 
PubMed 

Google Scholar 
Wang, W., Peng, X., Wei, F., Tung, C.-H. & Xu, Z. Copper(I)-catalyzed interrupted click reaction: synthesis of diverse 5-hetero-functionalized triazoles. Angew. Chem. Int. Ed. 55, 649–653 (2016).Article 

Google Scholar 
Ghiazza, C. et al. Visible-light-mediated metal-free synthesis of trifluoromethylselenolated arenes. Angew. Chem. Int. Ed. 57, 11781–11785 (2018).Article 

Google Scholar 
Li, J., Zhu, D., Lv, L. & Li, C.-J. Radical difluoromethylthiolation of aromatics enabled by visible light. Chem. Sci. 9, 5781–5786 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Qi, J., Wei, F., Huang, S., Tung, C.-H. & Xu, Z. Copper(I)-catalyzed asymmetric interrupted kinugasa reaction: synthesis of α-thiofunctional chiral β-lactams. Angew. Chem. Int. Ed. 60, 4561–4565 (2021).Article 

Google Scholar 
Xu, B., Wang, D., Hu, Y. & Shen, Q. Silver-catalyzed ring-opening difluoromethylthiolation/trifluoromethylthiolation of cycloalkanols with PhSO2SCF2H or PhSO2SCF3. Org. Chem. Front. 5, 1462–1465 (2018).Article 

Google Scholar 
Dong, Y. et al. Organophotoredox-catalyzed formation of alkyl-aryl and -alkyl C-S/Se bonds from coupling of redox-active esters with thio/selenosulfonates. Org. Lett. 22, 9562–9567 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, J. et al. Visible-light-promoted cross-coupling reactions of 4-Alkyl-1,4-dihydropyridines with thiosulfonate or selenium sulfonate: a unified approach to sulfides, selenides, and sulfoxides. Org. Lett. 22, 4908–4913 (2020).Article 
PubMed 

Google Scholar 
Wu, Z. & Pratt, D. A. A divergent strategy for site-selective radical disulfuration of carboxylic acids with trisulfide-1,1-dioxides. Angew. Chem. Int. Ed. 60, 15598–15605 (2021).Article 

Google Scholar 
Zhou, X., Pyle, D., Zhang, Z. & Dong, G. Deacylative thiolation by redox-neutral aromatization-driven C-C fragmentation of ketones. Angew. Chem. Int. Ed. 62, e202213691 (2023).Article 

Google Scholar 
Wu, H. et al. Construction of C-S and C-Se bonds from unstrained ketone precursors under photoredox catalysis. Angew. Chem. Int. Ed. 63, e202314790 (2024).Article 

Google Scholar 
Zhu, D., Shao, X., Hong, X., Lu, L. & Shen, Q. PhSO2SCF2H: a shelf-stable, easily scalable reagent for radical difluoromethylthiolation. Angew. Chem. Int. Ed 55, 15807–15811 (2016).Article 

Google Scholar 
Li, H., Shan, C., Tung, C.-H. & Xu, Z. Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes. Chem. Sci. 8, 2610–2615 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Gadde, K. et al. Thiosulfonylation of unactivated alkenes with visible-light organic photocatalysis. ACS Catal. 10, 8765–8779 (2020).Article 

Google Scholar 
Peng, Z., Yin, H., Zhang, H. & Jia, T. Regio- and stereoselective photoredox-catalyzed atom transfer radical addition of thiosulfonates to aryl alkynes. Org. Lett. 22, 5885–5889 (2020).Article 
PubMed 

Google Scholar 
Lü, S., Wang, Z., Gao, X., Chen, K. & Zhu, S. 1,2-Difunctionalization of acetylene enabled by light. Angew. Chem. Int. Ed. 62, e202300268 (2023).Article 

Google Scholar 
Ren, X. et al. Access to polysulfides through photocatalyzed dithiosulfonylation. Angew. Chem. Int. Ed. 62, e202302199 (2023).Article 

Google Scholar 
Chen, Y. et al. Nickel(ii)/TPMPP catalyzed reductive coupling of oxalates and tetrasulfides: synthesis of unsymmetric disulfides. Org. Chem. Front. 9, 4962–4968 (2022).Article 

Google Scholar 
Wang, F., Chen, Y., Rao, W., Ackermann, L. & Wang, S.-Y. Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nat. Commun. 13, 2588 (2022).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Cao, J.-M. et al. Simultaneous preparation of sulfides/selenides and sulfones via synergistic nickel-catalyzed reductive coupling and SN2 reaction. Org. Lett. 25, 9207–9212 (2023).Article 
PubMed 

Google Scholar 
Fujiki, K., Tanifuji, N., Sasaki, Y. & Yokoyama, T. New and facile synthesis of thiosulfonates from sulfinate/disulfide/I2 system. Synthesis 2002, 0343–0348 (2002).Article 

Google Scholar 
Liang, G. et al. NBS-promoted sulfenylation of sulfinates with disulfides leading to unsymmetrical or symmetrical thiosulfonates. Chin. J. Chem. 30, 1611–1616 (2012).Article 

Google Scholar 
Pham, H. T., Nguyen, N.-L. T., Duus, F. & Luu, T. X. T. Ultrasound-accelerated synthesis of asymmetrical thiosulfonate S-esters by base-promoted reaction of sulfonyl chlorides with thiols. Phosphorus Sulfur Silicon Relat. Elem. 190, 1934–1941 (2015).Article 

Google Scholar 
Gui, Y., Qiu, L., Li, Y., Li, H. & Dong, S. Internal activation of peptidyl prolyl thioesters in native chemical ligation. J. Am. Chem. Soc. 138, 4890–4899 (2016).Article 
PubMed 

Google Scholar 
Gong, K., Zhou, Y. & Jiang, X. From symmetrical tetrasulfides to trisulfide dioxides via photocatalysis. Green Chem. 23, 9865–9869 (2021).Article 

Google Scholar 
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheung, K. P. S., Sarkar, S. & Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 122, 1543–1625 (2022).Article 
PubMed 

Google Scholar 
Bellotti, P. & Glorius, F. Strain-release photocatalysis. J. Am. Chem. Soc. 145, 20716–20732 (2023).Article 
PubMed 

Google Scholar 
Ham, R., Nielsen, C. J., Pullen, S. & Reek, J. N. H. Supramolecular coordination cages for artificial photosynthesis and synthetic photocatalysis. Chem. Rev. 123, 5225–5261 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Xu, G.-Q., Wang, W. D. & Xu, P.-F. Photocatalyzed enantioselective functionalization of C(sp3)-H bonds. J. Am. Chem. Soc. 146, 1209–1223 (2024).Article 
PubMed 

Google Scholar 
He, J. et al. Catalytic decarboxylative radical sulfonylation. Chem 6, 1149–1159 (2020).Article 

Google Scholar 
Mao, R., Balon, J. & Hu, X. Decarboxylative C(sp3)-O cross-coupling. Angew. Chem. Int. Ed. 57, 13624–13628 (2018).Article 

Google Scholar 
Mao, R., Balon, J. & Hu, X. Cross-coupling of alkyl redox-active esters with benzophenone imines: tandem photoredox and copper catalysis. Angew. Chem. Int. Ed. 57, 9501–9504 (2018).Article 

Google Scholar 
Wang, C. et al. Visible-light-driven, copper-catalyzed decarboxylative C(sp3)-H alkylation of glycine and peptides. Angew. Chem. Int. Ed. 57, 15841–15846 (2018).Article 
ADS 

Google Scholar 
Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).Article 
PubMed 

Google Scholar 
Guo, Y., Luo, Y., Mu, S., Xu, J. & Song, Q. Photoinduced decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. Org. Lett. 23, 6729–6734 (2021).Article 
PubMed 

Google Scholar 
Tian, Y. et al. A general copper-catalysed enantioconvergent C(sp3)-S cross-coupling via biomimetic radical homolytic substitution. Nat. Chem. 16, 466–475 (2023).Article 
PubMed 

Google Scholar 
Mampuys, P. et al. Iodide-catalyzed synthesis of secondary thiocarbamates from isocyanides and thiosulfonates. Org. Lett. 18, 2808–2811 (2016).Article 
PubMed 

Google Scholar 
Zhang, Y. et al. Organocatalytic transformation of aldehydes to thioesters with visible light. Chem. Eur. J. 25, 8225–8228 (2019).Article 
PubMed 

Google Scholar 
Chen, S. et al. Sandmeyer-type reductive disulfuration of anilines. Org. Lett. 23, 7428–7433 (2021).Article 
PubMed 

Google Scholar 
Wang, W., Lin, Y., Ma, Y., Tung, C.-H. & Xu, Z. Cu-catalyzed electrophilic disulfur transfer: synthesis of unsymmetrical disulfides. Org. Lett. 20, 3829–3832 (2018).Article 
PubMed 

Google Scholar 
Li, J., Li, M., Duan, X. & Song, W. Copper-catalyzed thiolation of terminal aromatic alkynes to access alkynyl disulfides. Tetrahedron Lett. 61, 152256 (2020).Article 

Google Scholar 
Hunter, R., Kaschula, C., Stellenboom, N., Cotton, J. & Parker, M. I. New excursions into the synthesis and medicinal chemistry of the disulfide bond. Phosphorus Sulfur Silicon Relat. Elem. 188, 1497–1507 (2013).Article 

Google Scholar 
Wang, D., Zhu, N., Chen, P., Lin, Z. & Liu, G. Enantioselective decarboxylative cyanation employing cooperative photoredox catalysis and copper catalysis. J. Am. Chem. Soc. 139, 15632–15635 (2017).Article 
PubMed 

Google Scholar 
Zhao, W., Wurz, R. P., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed decarboxylative C-N coupling to generate protected amines: an alternative to the curtius rearrangement. J. Am. Chem. Soc. 139, 12153–12156 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Xia, H.-D. et al. Photoinduced copper-catalyzed asymmetric decarboxylative alkynylation with terminal alkynes. Angew. Chem. Int. Ed. 59, 16926–16932 (2020).Article 

Google Scholar 
Yi, X., Mao, R., Lavrencic, L. & Hu, X. Photocatalytic decarboxylative coupling of aliphatic N-hydroxyphthalimide esters with polyfluoroaryl nucleophiles. Angew. Chem. Int. Ed. 60, 23557–23563 (2021).Article 

Google Scholar 

Hot Topics

Related Articles