Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel

Simons, T. et al. Chemical and sensory analysis of commercial Navel oranges in California. npj Sci. ood 3, 1–11 (2019).
Google Scholar 
Wang, Z. et al. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: effect of different extraction methods thereon. Lwt 173, 114337 (2023).Article 
CAS 

Google Scholar 
Xue, P. et al. Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT 161, 113387 (2022).Article 
CAS 

Google Scholar 
Wang, Y. & Jian, C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. npj Sci. Food 6, 1–16 (2022).Article 

Google Scholar 
Llavata, B., Picinelli, A., Simal, S. & Cárcel, J. A. Cider apple pomace as a source of nutrients: evaluation of the polyphenolic profile, antioxidant and fiber properties after drying process at different temperatures. Food Chem. X 15, 100403 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Borsini, A. A., Llavata, B., Umaña, M. & Cárcel, J. A. Artichoke by products as a source of antioxidant and fiber: how it can be affected by drying temperature. Foods 10, 1–13 (2021).Article 

Google Scholar 
Bozkir, H. & Ergün, A. R. Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. LWT 131, 109704 (2020).Article 
CAS 

Google Scholar 
Lin, Z. et al. Steam blanching and ethanol pretreatment enhance drying rates and improve the quality attributes of apple slices via microstructure modification. J. Food Process. Preserv. 46, 1–14 (2022).Article 

Google Scholar 
Ando, Y. et al. Improvements of drying rate and structural quality of microwave-vacuum dried carrot by freeze-thaw pretreatment. LWT 100, 294–299 (2019).Article 
CAS 

Google Scholar 
Loureiro, A. da C. et al. Cold plasma technique as a pretreatment for drying fruits: evaluation of the excitation frequency on drying process and bioactive compounds. Food Res. Int. 147, 110462 (2021).Ricce, C., Rojas, M. L., Miano, A. C., Siche, R. & Augusto, P. E. D. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res. Int. 89, 701–708 (2016).Article 
CAS 
PubMed 

Google Scholar 
Feng, M. et al. Individual and synergistic effect of multi-frequency ultrasound and electro-infrared pretreatments on polyphenol accumulation and drying characteristics of edible roses. Food Res. Int. 163, 112120 (2023).Article 
CAS 
PubMed 

Google Scholar 
Santos, N. C. et al. Effect of pulse electric field (PEF) intensity combined with drying temperature on mass transfer, functional properties, and in vitro digestibility of dehydrated mango peels. J. Food Meas. Charact. 17, 5219–5233 (2023).Article 

Google Scholar 
Wang, M. et al. Freeze-thaw pretreatment improves the vacuum freeze-drying efficiency and storage stability of goji berry (Lycium barbarum. L.). LWT Food Sci. Technol. 189, 115439 (2023).Article 
CAS 

Google Scholar 
Vallespir, F., Rodríguez, Ó., Eim, V. S., Rosselló, C. & Simal, S. Effects of freezing treatments before convective drying on quality parameters: vegetables with different microstructures. J. Food Eng. 249, 15–24 (2019).Article 
CAS 

Google Scholar 
Llavata, B., García-Pérez, J. V., Simal, S. & Cárcel, J. A. Innovative pre-treatments to enhance food drying: a current review. Curr. Opin. Food Sci. 35, 20–26 (2020).Article 

Google Scholar 
Shorstkii, I. et al. Correlation of the cell disintegration index with Luikov’s heat and mass transfer parameters for drying of pulsed electric field (PEF) pretreated plant materials. J. Food Eng. 316, 110822 (2022).Article 

Google Scholar 
Malakar, S. et al. Application of novel pretreatment technologies for intensification of drying performance and quality attributes of food commodities: a review. Food Sci. Biotechnol. 32, 1303–1335 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Kim, S. Y. et al. A pulsed electric field accelerates the mass transfer during the convetive drying of carrots: drying and rehydration kinetics, texture and carotenoid content. Foods 12, 589 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Polachini, T. C. et al. Hot-air ultrasound-assisted drying of green wheat and barley malts to enhance process kinetics, amylase activity and their application in bread formulation. Food Bioprod. Process. 142, 17–28 (2023).Article 
CAS 

Google Scholar 
Szadzińska, J., Mierzwa, D. & Musielak, G. Ultrasound-assisted convective drying of white mushrooms (Agaricus bisporus). Chem. Eng. Process. Process Intensif. 172, 108803 (2022).Article 

Google Scholar 
García-Pérez, J. V. et al. Ultrasonic drying for food preservation. Power Ultrasonics 743–771 https://doi.org/10.1016/B978-0-12-820254-8.00027-0 (Elsevier, 2023).Ozuna, C., Álvarez-Arenas, T. G., Riera, E., Cárcel, J. A. & Garcia-Perez, J. V. Influence of material structure on air-borne ultrasonic application in drying. Ultrason. Sonochem. 21, 1235–1243 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhu, R. et al. Dehydration of apple slices by sequential drying pretreatments and airborne ultrasound-assisted air drying: Study on mass transfer, profiles of phenolics and organic acids and PPO activity. Innov. Food Sci. Emerg. Technol. 75, 102871 (2022).Article 
CAS 

Google Scholar 
Corrêa, J. L. G., Rasia, M. C., Mulet, A. & Cárcel, J. A. Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). Innov. Food Sci. Emerg. Technol. 41, 284–291 (2017).Article 

Google Scholar 
Rojas, M. L., Augusto, P. E. D. & Cárcel, J. A. Combining ethanol pre-treatment and ultrasound-assisted drying to enhance apple chips by fortification with black carrot anthocyanin. J. Sci. Food Agric. 101, 2078–2089 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y. Y., Wang, Y., Lv, W. Q., Li, D. & Wang, L. J. Freeze-thaw and ultrasound pretreatment before microwave combined drying affects drying kinetics, cell structure and quality parameters of Platycodon grandiflorum. Ind. Crops Prod. 164, 113391 (2021).Article 
CAS 

Google Scholar 
Xu, X. et al. Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. Ultrason. Sonochem. 70, 105300 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mello, R. E., Fontana, A., Mulet, A., Corrêa, J. L. G. & Cárcel, J. A. PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innov. Food Sci. Emerg. Technol. 72, 102753 (2021).Article 
CAS 

Google Scholar 
Llavata, B., Collazos-Escobar, G. A., Garcia-Perez, J. V. & Carcel, J. A. PEF pre-treatment and ultrasound-assisted drying at different temperatures as a stabilizing method for the up-cycling of kiwifruit: effect on drying kinetics and final quality. Innov. Food Sci. Emerg. Technol. 92, 103591 (2024).Article 
CAS 

Google Scholar 
Zhang, T. et al. Dynamic changes of potato characteristics during traditional freeze-thaw dehydration processing. Food Chem. 389, 133069 (2022).Article 
CAS 
PubMed 

Google Scholar 
Santos, N. C. et al. Impact of pretreatments with ethanol and freezing on drying slice papaya: drying performance and kinetic of ultrasound-assisted extraction of phenolics compounds. J. Sci. Food Agric. 103, 125–134 (2023).Article 
CAS 
PubMed 

Google Scholar 
Guo, X. et al. An evaluation of different pretreatment methods of hot-air drying of garlic: drying characteristics, energy consumption and quality properties. LWT 180, 114685 (2023).Article 
CAS 

Google Scholar 
Chen, F., Zhang, M., Devahastin, S. & Yu, D. Comparative evaluation of the properties of deep-frozen blueberries dried by vacuum infrared freeze drying with the use of CO2 laser perforation, ultrasound, and freezing–thawing as pretreatments. Food Bioprocess Technol. 14, 1805–1816 (2021).Article 
CAS 

Google Scholar 
Liu, C., Pirozzi, A., Ferrari, G., Vorobiev, E. & Grimi, N. Impact of pulsed electric fields on vacuum drying kinetics and physicochemical properties of carrot. Food Res. Int. 137, 109658 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ostermeier, R., Giersemehl, P., Siemer, C., Töpfl, S. & Jäger, H. Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. J. Food Eng. 237, 110–117 (2018).Article 
CAS 

Google Scholar 
Arevalo, P., Ngadi, M. O., Bazhal, M. I. & Raghavan, G. S. V. Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices. Dry. Technol. 22, 1233–1246 (2004).Article 

Google Scholar 
Alam, M. R., Lyng, J. G., Frontuto, D., Marra, F. & Cinquanta, L. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J. Food Sci. 83, 2159–2166 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pérez-Won, M. et al. Pulsed electric fields as pretreatment for different drying methods in Chilean abalone (Concholepas concholepas) mollusk: effects on product physical properties and drying methods sustainability. Food Bioprocess. Technol. 16, 2772–2788 (2023).Article 

Google Scholar 
Wiktor, A. et al. Sustainability and bioactive compound preservation in microwave and pulsed electric fields technology assisted drying. Innov. Food Sci. Emerg. Technol. 67, 102597 (2021).Article 
CAS 

Google Scholar 
Garcia-Pérez, J. V., Cárcel, J. A., Riera, E. & Mulet, A. Influence of the applied acoustic energy on the drying of carrots and lemon peel. Dry. Technol. 27, 281–287 (2009).Article 

Google Scholar 
Mello, R. E., Fontana, A., Mulet, A., Correa, J. L. G. & Cárcel, J. A. Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Dry. Technol. 38, 259–267 (2020).Article 
CAS 

Google Scholar 
Llavata, B., Femenia, A., Clemente, G. & Cárcel, J. A. Combined effect of airborne ultrasound and temperature on the drying kinetics and quality properties of Kiwifruit (Actinidia Deliciosa). Food Bioprocess. Technol. 17, 440–451 (2023).Article 

Google Scholar 
Vallespir, F., Rodríguez, Ó., Eim, V. S., Rosselló, C. & Simal, S. Freezing pre-treatments on the intensification of the drying process of vegetables with different structures. J. Food Eng. 239, 83–91 (2018).Article 

Google Scholar 
Bassey, E. J., Sun, D. W., Esua, O. J. & Cheng, J. H. Effects of freeze-thaw pretreatments on the drying characteristics, physicochemical and phytochemical composition of red dragon fruit during mid- and near-infrared drying. Dry. Technol. 41, 561–576 (2023).Article 

Google Scholar 
Rojas, M. L. et al. Convective drying of cambuci, a native fruit from the Brazilian Atlantic Forest: effect of pretreatments with ethanol and freezing. J. Food Process Eng. 44, 1–11 (2021).Article 

Google Scholar 
Yamakage, K. et al. Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innov. Food Sci. Emerg. Technol. 68, 102615 (2021).Article 
CAS 

Google Scholar 
Sánchez-Torres, E. A. et al. Airborne ultrasonic application on hot air-drying of pork liver. Intensification of moisture transport and impact on protein solubility. Ultrason. Sonochem. 86, 106011 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Wiktor, A. et al. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry. Technol. 34, 1286–1296 (2016).Article 

Google Scholar 
Zongo, P. A., Khalloufi, S., Mikhaylin, S. & Ratti, C. Pulsed electric field and freeze-thawing pretreatments for sugar uptake modulation during osmotic dehydration of mango. Foods 11, 2551 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Noshad, M. & Ghasemi, P. Influence of freezing pretreatments on kinetics of convective air-drying and quality of grapes. Food Biosci. 38, 100763 (2020).Article 
CAS 

Google Scholar 
Faridnia, F., Burritt, D. J., Bremer, P. J. & Oey, I. Innovative approach to determine the effect of pulsed electric fields on the microstructure of whole potato tubers: Use of cell viability, microscopic images and ionic leakage measurements. Food Res. Int. 77, 556–564 (2015).Article 
CAS 

Google Scholar 
Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I. & Garcia-Perez, J. V. Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food Bioprod. Process. 90, 624–632 (2012).Article 

Google Scholar 
Chao, E., Li, J. & Fan, L. Enhancing drying efficiency and quality of seed-used pumpkin using ultrasound, freeze-thawing and blanching pretreatments. Food Chem. 384, 132496 (2022).Article 
CAS 
PubMed 

Google Scholar 
Deng, L. Z. et al. Hot air impingement drying kinetics and quality attributes of orange peel. J. Food Process. Preserv. 44, 1–11 (2020).Article 

Google Scholar 
Phuon, V., Ramos, I. N., Brandão, T. R. S. & Silva, C. L. M. Assessment of the impact of drying processes on orange peel quality characteristics. J. Food Process Eng. 45, 13794 (2022).Article 

Google Scholar 
Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A. & Perez-Munuera, I. Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food Bioprocess. Technol. 5, 2256–2265 (2012).Article 

Google Scholar 
Kammoun Bejar, A., Boudhrioua Mihoubi, N. & Kechaou, N. Moisture sorption isotherms—experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chem. 132, 1728–1735 (2012).Article 

Google Scholar 

Hot Topics

Related Articles