N, N’-bidentate ligand anchored palladium catalysts on MOFs for efficient Heck reaction

Gu, Q., Jia, Q., Long, J. & Gao, Z. Heterogeneous photocatalyzed C−C cross‐coupling reactions under visible-light and near-infrared light irradiation. ChemCatChem 11, 669–683 (2018).Article 

Google Scholar 
Ren, T. Peripheral covalent modification of inorganic and organometallic compounds through C-C bond formation reactions. Chem. Rev. 108, 4185–4207 (2008).Article 
CAS 
PubMed 

Google Scholar 
Mizoroki, T., Mori, K. & Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn. 44, 581 (1971).Article 
CAS 

Google Scholar 
Heck, R. F. & Nolley, J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 37, 2320–2322 (1972).Article 
CAS 

Google Scholar 
Song, C. E., Oh, C. R., Roh, E. J., Lee, S.-G. & Choi, J. H. One-step synthesis of paclitaxel side-chain precursor: benzamide-based asymmetric aminohydroxylation of isopropyl trans-cinnamate. Tetrahedron Asymm. 10, 671–674 (1999).Article 
CAS 

Google Scholar 
Jing, L., Jin, Y., Zhang, S. & Sun, X. Synthesis of anticancer drug docetaxel. Chin. J. Med. Chem. 16, 292–295 (2006).CAS 

Google Scholar 
Matsuura, T., Overman, L. E. & Poon, D. J. Catalytic asymmetric synthesis of either enantiomer of the calabaralkaloids physostigmine and physovenine. J. Am. Chem. Soc. 120, 6500–6503 (1998).Article 
CAS 

Google Scholar 
Sato, Y., Sodeoka, M. & Shibasaki, M. Catalytic asymmetric carbon-carbon bond formation: asymmetric synthesis of cis-decalin derivatives by palladium-catalyzed cyclization of prochiral alkenyl iodides. J. Org. Chem. 54, 4738–4739 (1989).Article 
CAS 

Google Scholar 
Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. Metal complexes of N‐heterocyclic carbenes—a new structural principle for catalysts in homogeneous catalysis. Angew. Chem. Int. Ed. 34, 2371–2374 (1995).Article 
CAS 

Google Scholar 
Tulloch, A. A. D. et al. Pyridine functionalised N-heterocyclic carbene complexes of palladium. Chem. Commun. 1247–1248, https://doi.org/10.1039/b002645j (2000)Kampwerth, A., Terhorst, M., Kampling, N., Vogt, D. & Seidensticker, T. Synthesis of biobased amines via Pd-catalysed telomerisation of the renewable β-myrcene in a water/ethanol multiphase system: catalyst recycling enabled by a self-separating product phase. Green Chem. 25, 6345–6354 (2023).Article 
CAS 

Google Scholar 
Chatzopoulou, M. et al. Pilot study to quantify palladium impurities in lead-like compounds following commonly used purification techniques. ACS Med. Chem. Lett. 13, 262–270 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).Article 
CAS 
PubMed 

Google Scholar 
Choe, K. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal–organic frameworks. Angew. Chem. Int. Ed. 59, 3650–3657 (2020).Article 
CAS 

Google Scholar 
Lim, J. et al. Amine-tagged fragmented ligand installation for covalent modification of MOF-74. Angew. Chem. Int. Ed. 60, 9296–9300 (2021).Article 
CAS 

Google Scholar 
Martínez-Izquierdo, L., Téllez, C. & Coronas, J. Highly stable Pebax® Renew® thin-film nanocomposite membranes with metal organic framework ZIF-94 and ionic liquid [Bmim][BF4] for CO2 capture. J. Mater. Chem. A 10, 18822–18833 (2022).Article 

Google Scholar 
Tsai, M.-D., Chen, Y.-L., Chang, J.-W., Yang, S.-C. & Kung, C.-W. Sulfonate-functionalized two-dimensional metal-organic framework as a “dispersant” for polyaniline to boost its electrochemical capacitive performance. ACS Appl. Energy Mater. 6, 11268–11277 (2023).Article 
CAS 

Google Scholar 
Deria, P. et al. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption. Stud. J. Am. Chem. Soc. 135, 16801–16804 (2013).Article 
CAS 

Google Scholar 
Wang, Z. et al. Fluorinated strategy of node structure of Zr-based MOFMOF for construction of high-performance composite polymer electrolyte membranes. J. Membr. Sci. 645, 120193 (2022).Article 
CAS 

Google Scholar 
Banerjee, M. et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. J. Am. Chem. Soc. 131, 7524–7525 (2009).Article 
CAS 
PubMed 

Google Scholar 
Lalonde, M. et al. Transmetalation: routes to metal exchange within metal–organic frameworks. J. Mater. Chem. A 1, 5453–5468 (2013).Article 
CAS 

Google Scholar 
Das, S., Kim, H. & Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 131, 3814–3815 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Z. et al. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO2/CH4 selectivity. Angew. Chem. Int. Ed. 51, 9330–9334 (2012).Article 
CAS 

Google Scholar 
Li, B. et al. Metal-cation-directed de novo assembly of a functionalized guest molecule in the nanospace of a metal-organic framework. J. Am. Chem. Soc. 136, 1202–1205 (2014).Article 
CAS 
PubMed 

Google Scholar 
Mao, J. et al. Isolated ni atoms dispersed on Ru nanosheets: high-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 20, 3442–3448 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wang, Z. et al. Titania-supported Cu-single-atom catalyst for electrochemical reduction of acetylene to ethylene at low-concentrations with suppressed hydrogen evolution. Adv. Mater. 35, 2303818 (2023).Article 
CAS 

Google Scholar 
Wang, Q. et al. Photoinduced metastable asymmetric Cu single atoms for photoreduction of CO2 to ethylene. Adv. Energy Mater. 13, 2302692 (2023).Article 
CAS 

Google Scholar 
Lin, J. et al. Macroporous carbon-nitride-supported transition-metal single-atom catalysts for photocatalytic hydrogen production from ammonia splitting. ACS Catal. 13, 11711–11722 (2023).Article 
CAS 

Google Scholar 
Liu, H. et al. Pd–Mn/NC dual single-atomic sites with hollow mesopores for the highly efficient semihydrogenation of phenylacetylene. J. Am. Chem. Soc. 146, 2132–2140 (2024).Article 
CAS 
PubMed 

Google Scholar 
Jiang, R. et al. Edge-site engineering of atomically dispersed Fe–N by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140, 11594–11598 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sui, J. et al. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 34, e2109203 (2022).Article 
PubMed 

Google Scholar 
Wang, J. et al. Precise regulation of the coordination environment of single Co(II) sites in a metal-organic framework for boosting CO2 photoreduction. ACS Catal. 13, 8760–8769 (2023).Article 
CAS 

Google Scholar 
Bai, S. et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nat. Commun. 11, 954 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wei, H. et al. Feox-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Peralta, R. A. et al. Highly active gas phase organometallic catalysis supported within metal-organic framework pores. J. Am. Chem. Soc. 142, 13533–13543 (2020).Article 
CAS 
PubMed 

Google Scholar 
Manna, K. et al. Chemoselective single-site earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 7, 12610 (2016).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Otake, K.-i. et al. Enhanced activity of heterogeneous Pd(II) catalysts on acid-functionalized metal-organic frameworks. ACS Catal. 9, 5383–5390 (2019).Article 
CAS 

Google Scholar 
Parshamoni, S., Nasani, R., Paul, A. & Konar, S. Synthesis of a palladium based MOF via an effective post-synthetic modification approach and its catalytic activity towards Heck type coupling reactions. Inorg. Chem. Front. 8, 693–699 (2021).Article 
CAS 

Google Scholar 
He, T. et al. A practice of reticular chemistry: construction of a robust mesoporous palladium metal-organic framework via metal metathesis. J. Am. Chem. Soc. 143, 9901–9911 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vahabi, A. H., Norouzi, F., Sheibani, E. & Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: structural landscape and application. Coord. Chem. Rev. 445, 214050 (2021).Article 
CAS 

Google Scholar 
Chen, L., Rangan, S., Li, J., Jiang, H. & Li, Y. A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green. Chem. 16, 3978–3985 (2014).Article 
CAS 

Google Scholar 
Madrahimov, S. T. et al. Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bpy)NiII complexes. ACS Catal. 5, 6713–6718 (2015).Article 
CAS 

Google Scholar 
Young, R. J. et al. Isolating reactive metal-based species in metal-organic frameworks—viable strategies and opportunities. Chem. Sci. 11, 4031–4050 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sawano, T. et al. Metal-organic frameworks stabilize mono(phosphine)–metal complexes for broad-scope catalytic reactions. J. Am. Chem. Soc. 138, 9783–9786 (2016).Article 
CAS 
PubMed 

Google Scholar 
Dunning, S. G. et al. A metal-organic framework with cooperative phosphines that permit post‐synthetic installation of open metal sites. Angew. Chem. Int. Ed. 57, 9295–9299 (2018).Article 
CAS 

Google Scholar 
Sikma, R. E. et al. Organoarsine metal-organic framework with cis-diarsine pockets for the installation of uniquely confined metal complexes. J. Am. Chem. Soc. 140, 9806–9809 (2018).Article 
CAS 
PubMed 

Google Scholar 
Cargill Thompson, Alexander M. W., Batten, Stuart R., Jeffery, John C., Rees, Leigh H. & Ward, M. D. Some coordination chemistry of the bidentate nitrogen-donor ligand 2-(2-aminophenyl)pyridine. Aust. J. Chem. 50, 109–114 (1997).Article 

Google Scholar 
Durainatarajan, P., Prabakaran, M., Ramesh, S. & Periasamy, V. Self-assembly on copper surface by using imidazole derivative for corrosion protection. J. Adhes. Sci. Technol. 32, 1733–1749 (2018).Article 
CAS 

Google Scholar 
Lee, J. E. et al. Role of CO-vapors in vapor deposition polymerization. Sci. Rep. 5, 8420 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
Cao, S.-W. et al. Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl. Catal. B: Environ. 147, 940–946 (2014).Article 
CAS 

Google Scholar 
Jiang, G. et al. Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. ACS Appl. Mater. Interfaces 13, 4072–4083 (2021).Article 
CAS 
PubMed 

Google Scholar 
Pisarevskaya, E. Y., Zolotarevskiy, V. I., Kazanskiy, L. P., Ovsyannikova, E. V. & Alpatova, N. M. Double-stage poly-o-phenylenediamine modification with palladium nanoparticles. Synth. Met. 159, 304–310 (2009).Article 
CAS 

Google Scholar 
Mirkelamoglu, B. & Karakas, G. The role of alkali-metal promotion on CO oxidation over PdO/SnO2 catalysts. Appl. Catal. A: Gen. 299, 84–94 (2006).Article 
CAS 

Google Scholar 
Militello, M. C. & Simko, S. J. Elemental palladium by XPS. Surf. Sci. Spectra 3, 387–394 (1994).Article 
ADS 
CAS 

Google Scholar 
Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).Article 

Google Scholar 
Gole, B., Sanyal, U., Banerjee, R. & Mukherjee, P. S. High loading of Pd nanoparticles by interior functionalization of MOFs for heterogeneous catalysis. Inorg. Chem. 55, 2345–2354 (2016).Article 
CAS 
PubMed 

Google Scholar 
Azad, M., Rostamizadeh, S., Estiri, H. & Nouri, F. Ultra-small and highly dispersed Pd nanoparticles inside the pores of ZIF-8: sustainable approach to waste-minimized Mizoroki–Heck cross-coupling reaction based on reusable heterogeneous catalyst. Appl. Organomet. Chem. 33, e4952 (2019).Article 

Google Scholar 
Wei, Y.-L. et al. Pd(II)-nhdc-functionalized UiO-67 type MOF for catalyzing Heck cross-coupling and intermolecular benzyne–benzyne–alkene insertion reactions. Inorg. Chem. 57, 4379–4386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Nuri, A. et al. Pd supported MOFIRMOF-3: heterogeneous, efficient and reusable catalyst for Heck reaction. Catal. Lett. 149, 1941–1951 (2019).Article 
CAS 

Google Scholar 
Dong, D. et al. Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions. N. J. Chem. 42, 9317–9323 (2018).Article 
CAS 

Google Scholar 
Nuri, A. et al. Synthesis and characterization of palladium supported amino functionalized magnetic-MOFMOF-MIL-101 as an efficient and recoverable catalyst for Mizoroki–Heck cross-coupling. Catal. Lett. 150, 2617–2629 (2020).Article 
CAS 

Google Scholar 
Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).Article 
CAS 
PubMed 

Google Scholar 
Reinsch, H., Waitschat, S., Chavan, S. M., Lillerud, K. P. & Stock, N. A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur. J. Inorg. Chem. 2016, 4490–4498 (2016).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles