Non-equilibrium self-assembly for living matter-like properties

Chodasewicz, K. Evolution, reproduction and definition of life. Theory Biosci. 133, 39–45 (2014).Article 
PubMed 

Google Scholar 
Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nghe, P. et al. Prebiotic network evolution: six key parameters. Mol. Biosyst. 11, 3206–3217 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ralser, M. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem. J. 475, 2577–2592 (2018).Article 
CAS 
PubMed 

Google Scholar 
Stewart, J. E. The origins of life: the managed-metabolism hypothesis. Found. Sci. 24, 171–195 (2019).Article 

Google Scholar 
Deamer, D. & Weber, A. L. Bioenergetics and life’s origins. Cold Spring Harb. Perspect. Biol. 2, a004929 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Bissette, A. J. & Fletcher, S. P. Mechanisms of autocatalysis. Angew. Chem. Int. Ed. Engl. 52, 12800–12826 (2013).Article 
CAS 
PubMed 

Google Scholar 
Robertson, A., Sinclair, A. J. & Philp, D. Minimal self-replicating systems. Chem. Soc. Rev. 29, 141–152 (2000).Article 
CAS 

Google Scholar 
Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open. Biol. 3, 130156 (2013).Article 
PubMed 
PubMed Central 

Google Scholar 
Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).Article 
CAS 
PubMed 

Google Scholar 
England, J. L. Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919–923 (2015).Article 
CAS 
PubMed 

Google Scholar 
Kroiss, D., Ashkenasy, G., Braunschweig, A. B., Tuttle, T. & Ulijn, R. V. Catalyst: can systems chemistry unravel the mysteries of the chemical origins of life? Chem 5, 1917–1920 (2019).Article 
CAS 

Google Scholar 
Bai, Y. et al. Achieving biopolymer synergy in systems chemistry. Chem. Soc. Rev. 47, 5444–5456 (2018).Article 
CAS 
PubMed 

Google Scholar 
Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).Article 
CAS 
PubMed 

Google Scholar 
Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).Article 
CAS 
PubMed 

Google Scholar 
Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).Article 
CAS 
PubMed 

Google Scholar 
Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).Article 
CAS 
PubMed 

Google Scholar 
Afrose, S. P., Ghosh, C. & Das, D. Substrate induced generation of transient self-assembled catalytic systems. Chem. Sci. 12, 14674–14685 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Semenov, S. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chatterjee, A., Reja, A., Pal, S. & Das, D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).Article 
CAS 
PubMed 

Google Scholar 
Qualls, M. L., Sagar, R., Lou, J. & Best, M. D. Demolish and rebuild: controlling lipid self-assembly toward triggered release and artificial cells. J. Phys. Chem. B 125, 12918–12933 (2021).Article 
CAS 
PubMed 

Google Scholar 
Clixby, G. & Twyman, L. Self-replicating systems. Org. Biomol. Chem. 14, 4170–4184 (2016).Article 
CAS 
PubMed 

Google Scholar 
Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. Engl. 60, 20120–20143 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).Article 
CAS 
PubMed 

Google Scholar 
van der Helm, M. P., de Beun, T. & Eelkema, R. On the use of catalysis to bias reaction pathways in out-of-equilibrium systems. Chem. Sci. 12, 4484–4493 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).Article 

Google Scholar 
Tena-Solsona, M. & Boekhoven, J. Dissipative self-assembly of peptides. Isr. J. Chem. 59, 898–905 (2019).Article 
CAS 

Google Scholar 
van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).Article 
PubMed 

Google Scholar 
Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).Article 

Google Scholar 
De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mat. 30, 1706750 (2018).Article 

Google Scholar 
Hossain, M. M., Atkinson, J. L. & Hartley, C. S. Dissipative assembly of macrocycles comprising multiple transient bonds. Angew. Chem. Int. Ed. Engl. 59, 13807–13813 (2020).Article 
CAS 
PubMed 

Google Scholar 
Choi, S. et al. Fuel-driven transient crystallization of a cucurbit[8]uril-based host–guest complex. Angew. Chem. Int. Ed. Engl. 58, 16850–16853 (2019).Article 
CAS 
PubMed 

Google Scholar 
Insua, I. & Montenegro, J. Synthetic supramolecular systems in life-like materials and protocell models. Chem 6, 1652–1682 (2020).Article 
CAS 

Google Scholar 
Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).Article 
PubMed 

Google Scholar 
Liu, Q. et al. DNA-based dissipative assembly toward nanoarchitectonics. Adv. Funct. Mater. 32, 2201196 (2022).Article 
CAS 

Google Scholar 
Li, Z., Wang, J. & Wilner, I. Transient out-of-equilibrium nucleic acid-based dissipative networks and their applications. Adv. Funct. Mater. 32, 2200799 (2022).Article 
CAS 

Google Scholar 
Grosso, E. D., Franco, E., Prins, L. J. & Ricci, F. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022).Article 
PubMed 

Google Scholar 
Deng, J. & Walther, A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32, 2002629 (2020).Article 
CAS 

Google Scholar 
Orgel, L. E. The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol. 6, e18 (2008).Article 
PubMed 
PubMed Central 

Google Scholar 
Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).Article 
CAS 
PubMed 

Google Scholar 
Sharko, A., Livitz, D., De Piccoli, S., Bishop, K. J. M. & Hermans, T. M. Insights into chemically fueled supramolecular polymers. Chem. Rev. 13, 11759–11777 (2022).Article 

Google Scholar 
Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. Engl. 49, 4825–4828 (2010).Article 
CAS 
PubMed 

Google Scholar 
Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).Article 
CAS 
PubMed 

Google Scholar 
Wojciechowski, J. P., Martin, A. D. & Thordarson, P. Kinetically controlled lifetimes in redox-responsive transient supramolecular hydrogels. J. Am. Chem. Soc. 140, 2869–2874 (2018).Article 
CAS 
PubMed 

Google Scholar 
Ogden, W. A. & Guan, Z. Redox chemical-fueled dissipative self-assembly of active materials. ChemSystemsChem 2, e1900030 (2020).Article 
CAS 

Google Scholar 
Selmani, S. et al. Electrically fueled active supramolecular materials. J. Am. Chem. Soc. 144, 7844–7851 (2022).Article 
CAS 
PubMed 

Google Scholar 
Olivieri, E., Gasch, B., Quintard, G., Naubron, J.-V. & Quintard, A. Dissipative acid-fueled reprogrammable supramolecular materials. ACS Appl. Mater. Interfaces 14, 24720–24728 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tena-Solsona, M. et al. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 8, 15895 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dai, K. et al. Regulating chemically fueled peptide assemblies by molecular design. J. Am. Chem. Soc. 142, 14142–14149 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zhang, B. et al. Chemically fueled covalent crosslinking of polymer materials. Chem. Commun. 55, 2086–2089 (2019).Article 
CAS 

Google Scholar 
Leira-Iglesias, J., Tassoni, A., Adachi, T., Stich, M. & Hermans, T. M. Oscillations, travelling fronts and patterns in a supramolecular system. Nat. Nanotechnol. 13, 1021–1027 (2018).Article 
CAS 
PubMed 

Google Scholar 
Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).Article 
CAS 
PubMed 

Google Scholar 
Bal, S., Das, K., Ahmed, S. & Das, D. Chemically fueled dissipative self-assembly that exploits cooperative catalysis. Angew. Chem. Int. Ed. Engl. 58, 244–247 (2019).Article 
CAS 
PubMed 

Google Scholar 
Afrose, S. P., Bal, S., Chatterjee, A., Das, K. & Das, D. Designed negative feedback from transiently formed catalytic nanostructures. Angew. Chem. Int. Ed. Engl. 58, 15783–15787 (2019).Article 
CAS 
PubMed 

Google Scholar 
Pal, S., Reja, A., Tikader, B. & Das, D. Emergence of a promiscuous peroxidase under non-equilibrium conditions. Angew. Chem. Int. Ed. Engl. 61, e202111857 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dambenieks, A. K., Vu, P. H. Q. & Fyles, T. M. Dissipative assembly of a membrane transport system. Chem. Sci. 5, 3396–3403 (2014).Article 
CAS 

Google Scholar 
Smith, J. E., Mowles, A. K., Mehta, A. K. & Lynn, D. G. Looked at life from both sides now. Life 4, 887–902 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Carny, O. & Gazit, E. A model for the role of short self‐assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051–1055 (2005).Article 
CAS 
PubMed 

Google Scholar 
Guler, M. O. & Stupp, S. I. A self-assembled nanofiber catalyst for ester hydrolysis. J. Am. Chem. Soc. 129, 12082–12083 (2007).Article 
CAS 
PubMed 

Google Scholar 
Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303–309 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805–809 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhang, C. et al. Switchable hydrolase based on reversible formation of supramolecular catalytic site using a self-assembling peptide. Angew. Chem., Int. Ed. 56, 14511–14515 (2017).Article 
CAS 

Google Scholar 
Bal, S., Ghosh, C., Ghosh, T., Vijayaraghavan, R. K. & Das, D. Non-equilibrium polymerization of cross-β amyloid peptides for temporal control of electronic properties. Angew. Chem. Int. Ed. Engl. 59, 13506–13510 (2020).Article 
CAS 
PubMed 

Google Scholar 
Goswami, S., Reja, A., Pal, S., Singh, A. & Das, D. Nonequilibrium amyloid polymers exploit dynamic covalent linkage to temporally control charge-selective catalysis. J. Am. Chem. Soc. 144, 19248–19252 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).Article 
CAS 
PubMed 

Google Scholar 
Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).Article 
CAS 
PubMed 

Google Scholar 
Buddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Beales, P. A., Ciani, B. & Mann, S. The artificial cell: biology-inspired compartmentalization of chemical function. Interface Focus 8, 20180046 (2018).Article 
PubMed Central 

Google Scholar 
Almendro-Vedia, V. G. et al. Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F1F0-ATP synthase. Proc. Natl Acad. Sci. USA 114, 11291–11296 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jalani, K., Dhiman, S., Jain, A. & George, S. J. Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response. Chem. Sci. 8, 6030–6036 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Solís Muñana, P. et al. Substrate-induced self-assembly of cooperative catalysts. Angew. Chem. Int. Ed. Engl. 57, 16469–16474 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Das, K. et al. Formation of catalytic hotspots in ATP-templated assemblies. J. Am. Chem. Soc. 145, 898–904 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tena‐Solsona, M. et al. Accelerated ripening in chemically fueled emulsions. ChemSystemsChem 3, e2000034 (2021).Article 

Google Scholar 
Le Vay, K., Isabel Weise, L., Libicher, K., Mascarenhas, J. & Mutschler, H. Templated self-replication in biomimetic systems. Adv. Biosyst. 3, 1800313 (2019).Article 

Google Scholar 
Kosikova, T. & Philp, D. Exploring the emergence of complexity using synthetic replicators. Chem. Soc. Rev. 46, 7274–7305 (2017).Article 
CAS 
PubMed 

Google Scholar 
Xu, S. & Giuseppone, N. Self-duplicating amplification in a dynamic combinatorial library. J. Am. Chem. Soc. 130, 1826–1827 (2008).Article 
CAS 
PubMed 

Google Scholar 
Takakura, K., Toyota, T. & Sugawara, T. A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125, 8134–8140 (2003).Article 
CAS 
PubMed 

Google Scholar 
Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3, 775–781 (2011).Article 
CAS 
PubMed 

Google Scholar 
Chen, I. A. & Walde, P. From self-assembled vesicles to protocells. Cold Spring Harb. Perspect. Biol. 2, a002170 (2010).Article 
PubMed 
PubMed Central 

Google Scholar 
Yang, S. et al. Chemical fueling enables molecular complexification of self-replicators. Angew. Chem. Int. Ed. Engl. 60, 11344–11349 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ottelé, J., Hussain, A. S., Mayer, C. & Otto, S. Chance emergence of catalytic activity and promiscuity in a self-replicator. Nat. Catal. 3, 547–553 (2020).Article 

Google Scholar 
Pross, A. & Pascal, R. How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution. Beilstein J. Org. Chem. 13, 665–674 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, B. et al. Out-of-equilibrium self-replication allows selection for dynamic kinetic stability in a system of competing replicators. Angew. Chem. Int. Ed. Engl. 61, e202117605 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Post, E. A. J. & Fletcher, S. P. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem. Sci. 11, 9434–9442 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fuelled self-replicator. Nat. Commun. 10, 1011 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Howlett, M. G., Engwerda, A. H. J., Scanes, R. J. H. & Fletcher, S. P. An autonomously oscillating supramolecular self-replicator. Nat. Chem. 14, 805–810 (2022).Article 
CAS 
PubMed 

Google Scholar 
Maity, I. et al. Chemically fueled non-enzymatic bistable network. Nat. Commun. 10, 4636 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. Engl. 46, 72–191 (2006).Article 

Google Scholar 
Baroncini, M., Silvi, S. & Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 120, 200–268 (2020).Article 
CAS 
PubMed 

Google Scholar 
Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).Article 
CAS 
PubMed 

Google Scholar 
Olivieri, E., Gallagher, J. M., Betts, A., Mrad, T. W. & Leigh, D. A. Endergonic synthesis driven by chemical fuelling. Nat. Synth. 3, 707–714 (2024).Article 

Google Scholar 
Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Goodwin, J. T., Mehta, A. K. & Lynn, D. G. Digital and analog chemical evolution. Acc. Chem. Res. 45, 2189–2199 (2012).Article 
CAS 
PubMed 

Google Scholar 
Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations (Wiley, 1977).Fox, S. W. & Dose, K. Molecular Evolution and the Origin of Life (Freeman, 1976).Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ferrell, J. E., Tsai, T. Y.-C. & Yang, Q. Modeling the cell cycle: why do certain circuits oscillate? Cell 144, 874–885 (2011).Article 
CAS 
PubMed 

Google Scholar 
Reja, A., Pal, S., Bal, S. & Das, D. Minimal catalytic assemblies can oscillate utilizing feedback loops. Preprint at https://doi.org/10.21203/rs.3.rs-1235376/v1 (2022).Liu, M. et al. Peptide-modulated pH rhythms. ChemPhysChem 23, e202200103 (2022).Article 
CAS 
PubMed 

Google Scholar 
Maiti, S., Fortunati, I., Ferrante, C., Scrimin, P. & Prins, L. J. Dissipative self-assembly of vesicular nanoreactors. Nat. Chem. 8, 725–731 (2016).Article 
CAS 
PubMed 

Google Scholar 
Che, H. et al. ATP-mediated transient behavior of stomatocyte nanosystems. Angew. Chem. Int. Ed. Engl. 58, 13113–13118 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pezzato, C. & Prins, L. J. Transient signal generation in a self-assembled nanosystem fueled by ATP. Nat. Commun. 6, 7790 (2015).Article 
CAS 
PubMed 

Google Scholar 
Saha, B., Chatterjee, A., Reja, A. & Das, D. Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity. Chem. Commun. 55, 14194–14197 (2019).Article 
CAS 

Google Scholar 
Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dhiman, S., Jain, A., Kumar, M. & George, S. J. Adenosine-phosphate-fueled, temporally programmed supramolecular polymers with multiple transient states. J. Am. Chem. Soc. 139, 16568–16575 (2017).Article 
CAS 
PubMed 

Google Scholar 
Nijemeisland, M., Abdelmohsen, L. K. E. A., Huck, W. T. S., Wilson, D. A. & van Hest, J. C. M. A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement. ACS Cent. Sci. 2, 843–849 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Heinen, L., Heuser, T., Steinschulte, A. & Walther, A. Antagonistic enzymes in a biocatalytic pH feedback system program autonomous DNA hydrogel life cycles. Nano Lett. 17, 4989–4995 (2017).Article 
CAS 
PubMed 

Google Scholar 
Cingil, H. E., Meertens, N. C. H. & Voets, I. K. Temporally programmed disassembly and reassembly of C3Ms. Small 14, 1802089 (2018).Article 

Google Scholar 
Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511–518 (2014).Article 
CAS 
PubMed 

Google Scholar 
Spitzer, D., Rodrigues, L. L., Straßburger, D., Mezger, M. & Besenius, P. Tunable transient thermogels mediated by a pH- and redox-regulated supramolecular polymerization. Angew. Chem. Int. Ed. Engl. 56, 15461–15465 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yu, S., Xian, S., Ye, Z., Pramudya, I. & Webber, M. J. Glucose-fueled peptide assembly: glucagon delivery via enzymatic actuation. J. Am. Chem. Soc. 143, 12578–12589 (2021).Article 
CAS 
PubMed 

Google Scholar 
Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).Article 
CAS 
PubMed 

Google Scholar 
Grosso, E. D., Amodio, A., Ragazzon, G., Prins, L. J. & Ricci, F. Dissipative synthetic DNA-based receptors for the transient loading and release of molecular cargo. Angew. Chem. Int. Ed. Engl. 57, 10489–10493 (2018).Article 
PubMed 

Google Scholar 
Grosso, E. D., Ragazzon, G., Prins, L. J. & Ricci, F. Fuel-responsive allosteric DNA-based aptamers for the transient release of ATP and cocaine. Angew. Chem. Int. Ed. Engl. 58, 5582–5586 (2019).Article 
PubMed 

Google Scholar 
Heinen, L. & Walther, A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci. Adv. 5, eaaw0590 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles