Enantioconvergent synthesis of axially chiral amides enabled by Pd-catalyzed dynamic kinetic asymmetric aminocarbonylation

Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Bringmann, G. & Tajuddeen, N. N, C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat. Prod. Rep. 38, 2154–2186 (2021).Article 
PubMed 

Google Scholar 
Bringmann, G. & Menche, D. Stereoselective total synthesis of axially chiral natural products via biaryl lactones. Acc. Chem. Res. 34, 615–624 (2001).Article 
CAS 
PubMed 

Google Scholar 
Graff, J., Debande, T., Praz, J., Guénée, L. & Alexakis, A. Asymmetric bromine–lithium exchange: application toward the synthesis of natural product. Org. Lett. 15, 4270–4273 (2013).Article 
CAS 
PubMed 

Google Scholar 
Takaishi, K., Yasui, M. & Ema, T. Binaphthyl–bipyridyl cyclic dyads as a chiroptical switch. J. Am. Chem. Soc. 140, 5334–5338 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. & Tang, W. Enantioselective construction of ortho-sulfur- or nitrogen-substituted axially chiral biaryls and asymmetric synthesis of isoplagiochin D. Nat. Commun. 15, 4577–4577 (2022).Article 
ADS 

Google Scholar 
Noyori, R. & Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23, 345–350 (1990).Article 
CAS 

Google Scholar 
Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3212 (2003).Article 
CAS 
PubMed 

Google Scholar 
Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3070 (2003).Article 
CAS 
PubMed 

Google Scholar 
Knpfel, T. F., Aschwanden, P., Ichikawa, T., Watanabe, T. & Carreira, E. M. Readily available biaryl P, N ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 43, 5971–5973 (2004).Article 

Google Scholar 
Malkov, A. V. et al. On the mechanism of asymmetric allylation of aldehydes with allyltrichlorosilanes catalyzed by QUINOX, a chiral isoquinoline N-Oxide. J. Am. Chem. Soc. 130, 5341–5348 (2008).Article 
CAS 
PubMed 

Google Scholar 
Bringmann, G., Mutanyatta-Comar, J., Knauera, M. & Abegaz, B. Knipholone and related 4-phenylanthraquinones: structurally, pharmacologically, and biosynthetically remarkable natural products. Nat. Prod. Rep. 25, 696–718 (2008).Article 
CAS 
PubMed 

Google Scholar 
Hughes, C., Prieto-Davo, A., Jensen, P. & Fenical, W. The Marinopyrroles, antibiotics of an unprecedented structure class from a marine streptomyces sp. Org. Lett. 10, 629–631 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yalcouye, B., Choppin, S., Panossian, A., Leroux, F., Colobert, F. A concise atroposelective formal synthesis of (–)-steganon. Eur. J. Org. Chem. 18, 6285–6294 (2014).Perveen, S. et al. Synthesis of axially chiral biaryls via enantioselective Ullmann coupling of ortho-chlorinated aryl aldehydes enabled by a chiral 2,2′-bipyridine ligand. Angew. Chem. Int. Ed. 61, e202212108 (2022).Article 
ADS 
CAS 

Google Scholar 
Hashimoto, T. & Maruoka, K. Design of axially chiral dicarboxylic acid for asymmetric mannich reaction of arylaldehyde n-boc imines and diazo compounds. J. Am. Chem. Soc. 129, 10054–10055 (2007).Article 
CAS 
PubMed 

Google Scholar 
Hashimoto, T., Hirose, M. & Maruoka, K. Asymmetric imino aza-enamine reaction catalyzed by axially chiral dicarboxylic acid: use of arylaldehyde N, N-dialkylhydrazones as acyl anion equivalent. J. Am. Chem. Soc. 130, 7556–7557 (2008).Article 
CAS 
PubMed 

Google Scholar 
Xu, B. et al. Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation. Chem. Sci. 5, 1988–1991 (2014).Article 
CAS 

Google Scholar 
Wen, W. et al. Chiral aldehyde catalysis for the catalytic asymmetric. Activation Glycine Esters. J. Am. Chem. Soc. 140, 9774–9780 (2018).CAS 
PubMed 

Google Scholar 
Zhu, F. et al. Chiral aldehyde-nickel dual catalysis enables asymmetric α−propargylation of amino acids and stereodivergent synthesis of NP25302. Nat. Commun. 13, 7290 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J. et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science 360, 1438–1422 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ma, J. et al. Enantioselective synthesis of pyroglutamic acid esters from glycinate via carbonyl catalysis. Angew. Chem. Int. Ed. 60, 10588–10592 (2021).Article 
CAS 

Google Scholar 
Hou, C. et al. Catalytic asymmetric α C(sp3)–H addition of benzylamines to aldehydes. Nat. Catal. 5, 1051–1068 (2022).Article 

Google Scholar 
Xiao, X. & Zhao, B. Vitamin B6-based biomimetic asymmetric catalysis. Acc. Chem. Res. 56, 1097–1117 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lin, L. et al. Chiral carboxylic acid enabled achiral rhodium (III)-catalyzed enantioselective C−H functionalization. Angew. Chem. Int. Ed. 57, 12048–12052 (2018).Article 
ADS 
CAS 

Google Scholar 
Fukagawa, S., Kojima, M., Yoshino, T. & Matsunaga, S. Catalytic enantioselective methylene C(sp3)−H amidation of 8-alkyl quinolines using a Cp*RhIII/chiral carboxylic acid system. Angew. Chem. Int. Ed. 58, 18154–18158 (2019).Article 
CAS 

Google Scholar 
Zhou, T. et al. Efficient synthesis of sulfur-stereogenic sulfoximines via Ru(II)-catalyzed enantioselective C–H functionalization enabled by chiral carboxylic acid. J. Am. Chem. Soc. 143, 6810–6816 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhou, Y.-B., Zhou, T., Qian, P.-F., Li, J.-Y. & Shi, B.-F. Synthesis of sulfur-stereogenic sulfoximines via Co (III)/chiral carboxylic acid-catalyzed enantioselective C–H Amidation. ACS Catal. 12, 9806–9811 (2022).Article 
CAS 

Google Scholar 
Wang, Q., Gu, Q. & You, S.-L. Enantioselective carbonyl catalysis enabled by chiral aldehydes. Angew. Chem. Int. Ed. 58, 6818–6825 (2019).Article 
CAS 

Google Scholar 
Carmona, J. A., Rodriguez-Franco, C., Fernandez, R., Hornillos, V. & Lassaletta, J. M. Atroposelective transformation of axially chiral (hetero)biaryls. from desymmetrization to modern resolution strategies. Chem. Soc. Rev. 50, 2968–2983 (2021).Article 
CAS 
PubMed 

Google Scholar 
Cheng, J., Xiang, S., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).Article 
CAS 
PubMed 

Google Scholar 
Qian, P., Zhou, T. & Shi, B.-F. Transition-metal-catalyzed atroposelective synthesis of axially chiral styrenes. Chem. Commun. 59, 12669–12684 (2023).Article 
CAS 

Google Scholar 
Zhang, H., Li, T., Liu, S. & Shi, F. Catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements: an emerging field. Angew. Chem. Int. Ed. 63, e202311053 (2024).Article 
CAS 

Google Scholar 
Yang, J. et al. Direct synthesis of adipic acid esters via palladium-catalyzed carbonylation of 1,3-dienes. Science 366, 1514–1517 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Yang, J. et al. Efficient palladium-catalyzed carbonylation of 1,3-dienes: selective synthesis of adipates and other aliphatic diesters. Angew. Chem. Int. Ed. 60, 9527–9533 (2021).Article 
CAS 

Google Scholar 
Dong, K. et al. Rh(I)-catalyzed hydroamidation of olefins via selective activation of N–H bonds in aliphatic amines. J. Am. Chem. Soc. 137, 6053–6058 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, G., Gao, B. & Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed. 54, 7657–7661 (2015).Article 
CAS 

Google Scholar 
Gao, B., Zhang, G., Zhou, X. & Huang, H. Palladium-catalyzed regiodivergent hydroaminocarbonylation of alkenes to primary amides with ammonium chloride. Chem. Sci. 9, 380–386 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yang, H., Yao, Y., Chen, M., Ren, Z. & Guan, Z.-H. Palladium-catalyzed markovnikov hydroaminocarbonylation of 1,1-disubstituted and 1,1,2-trisubstituted alkenes for formation of amides with quaternary carbon. J. Am. Chem. Soc. 143, 7298–7305 (2021).Article 
CAS 
PubMed 

Google Scholar 
Bao, Z.-P., Li, C., Li, Y., Ding, Y. & Wu, X.-F. Palladium-catalyzed oxidative double alkoxycarbonylation of ethylene toward succinic acid derivatives. Green. Carbon 2, 205–208 (2024).Article 

Google Scholar 
Dijik, L. et al. Data science-enabled palladium-catalyzed enantioselective aryl-carbonylation of sulfonimidamides. J. Am. Chem. Soc. 145, 20959–20967 (2023).Article 

Google Scholar 
Faculak, M. S., Veatch, A. & Alexanian, E. Cobalt-catalyzed synthesis of amides from alkenes and amines promoted by light. Science 383, 77–81 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Hirschbeck, V., Gehrtz, P. & Fleischer, I. Regioselective thiocarbonylation of vinyl arenes. J. Am. Chem. Soc. 138, 16794–16799 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ai, H., Zhao, F., Geng, H. & Wu, X. Palladium-catalyzed thiocarbonylation of alkenes toward linear thioesters. ACS Catal. 11, 3614–3619 (2021).Article 
CAS 

Google Scholar 
Wu, F., Wang, B., Li, N., Ren, Z. & Guan, Z.-H. Palladium-catalyzed regiodivergent hydrochlorocarbonylation of alkenes for formation of acid chlorides. Nat. Commun. 14, 3167–3167 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chami, K. et al. A visible light driven nickel carbonylation catalyst: the synthesis of acid chlorides from alkyl halides. Angew. Chem. Int. Ed. 62, e202213297 (2023).Article 

Google Scholar 
Cao, Z., Wang, Q., Neumann, H. & Beller, M. Regiodivergent carbonylation of alkenes: selective palladium-catalyzed synthesis of linear and branched selenoesters. Angew. Chem. Int. Ed. 63, e202313714 (2024).Article 
CAS 

Google Scholar 
Ali, B. E., Alper, H. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. 113–132 (Wiley, 2004).Franke, R., Selent, D. & Börner, A. Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).Article 
CAS 
PubMed 

Google Scholar 
Brennführer, A., Neumann, H. & Beller, M. Palladium-catalyzed carbonylation reactions of alkenes and alkynes. ChemCatChem 1, 28–41 (2009).Article 

Google Scholar 
Yuan, Y. & Wu, X.-F. Generation and transformation of α-Oxy carbene intermediates enabled by copper-catalyzed carbonylation. Green. Carbon 2, 70–80 (2024).Article 

Google Scholar 
Sakai, N., Mano, S., Nozaki, K. & Takaya, H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphine phosphite-rhodium(I) complexes. J. Am. Chem. Soc. 115, 7033–7034 (1993).Article 
CAS 

Google Scholar 
Yan, Y. & Zhang, X. A hybrid phosphorus ligand for highly enantioselective asymmetric hydroformylation. J. Am. Chem. Soc. 128, 7198–7202 (2006).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. & Buchwald, S. L. Rh-catalyzed asymmetric hydroformylation of functionalized 1,1-disubstituted olefins. J. Am. Chem. Soc. 133, 19080–19083 (2011).Article 
CAS 
PubMed 

Google Scholar 
Chikkali, S. H., Bellini, R., Bruin, B., Vlugt, J. I. & Reek, J. N. H. Highly selective asymmetric rh-catalyzed hydroformylation of heterocyclic olefins. J. Am. Chem. Soc. 134, 6607–6616 (2012).Article 
CAS 
PubMed 

Google Scholar 
Abrams, M. L., Foarta, F. & Landis, C. R. Asymmetric hydroformylation of z-enamides and enol esters with rhodium-bisdiazaphos catalysts. J. Am. Chem. Soc. 136, 14583–14588 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, S., Zhang, D., Zhang, R., Bai, S.-T. & Zhang, X. Rhodium-catalyzed chemo-, regio- and enantioselective hydroformylation of cyclopropyl-functionalized trisubstituted alkenes. Angew. Chem. Int. Ed. 61, e202206577 (2022).Article 
ADS 
CAS 

Google Scholar 
Peng, J., Liu, X., Li, L. & Wu, X.-F. Palladium-catalyzed enantioselective carbonylation reactions. Sci. China Chem. 65, 441–461 (2022).Article 
CAS 

Google Scholar 
Li, J. & Shi, Y. Progress on transition metal catalyzed asymmetric hydroesterification, hydrocarboxylation, and hydroamidation reactions of olefins. Chem. Soc. Rev. 51, 6757–6773 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xiao, W.-J. & Alper, H. First examples of enantioselective palladium-catalyzed thiocarbonylation of prochiral 1,3-conjugated dienes with thiols and carbon monoxide:  efficient synthesis of optically active β, γ-unsaturated thiol esters. J. Org. Chem. 66, 6229–6233 (2001).Article 
CAS 
PubMed 

Google Scholar 
Wang, X. et al. Palladium-catalyzed enantioselective thiocarbonylation of styrenes. Angew. Chem. Int. Ed. 58, 12264–12270 (2019).Article 
CAS 

Google Scholar 
Yao, Y. et al. Palladium-catalyzed asymmetric markovnikov hydroxycarbonylation and hydroalkoxycarbonylation of vinyl arenes: synthesis of 2-arylpropanoic acids. Angew. Chem. Int. Ed. 60, 23117–23122 (2021).Article 
CAS 

Google Scholar 
Yao, Y. et al. Asymmetric markovnikov hydroaminocarbonylation of alkenes enabled by palladium-monodentate phosphoramidite catalysis. J. Am. Chem. Soc. 143, 85–91 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ren, X. et al. Asymmetric alkoxy- and hydroxy-carbonylations of functionalized alkenes assisted by β-carbonyl groups. Angew. Chem. Int. Ed. 60, 17693–17700 (2021).Article 
ADS 
CAS 

Google Scholar 
Tian, B., Li, X., Chen, P. & Liu, G. Asymmetric palladium-catalyzed oxycarbonylation of terminal alkenes: efficient access to β-hydroxy alkylcarboxylic acids. Angew. Chem. Int. Ed. 60, 14881–14886 (2021).Article 
CAS 

Google Scholar 
Ji, X., Shen, C., Tian, X., Zhang, H. & Dong, K. Asymmetric double hydroxycarbonylation of alkynes to chiral succinic acids enabled by palladium relay catalysis. Angew. Chem. Int. Ed. 61, e202204156 (2022).Article 
ADS 
CAS 

Google Scholar 
Chen, J. & Zhu, S. Nickel-catalyzed multicomponent coupling: synthesis of α-chiral ketones by reductive hydrocarbonylation of alkenes. J. Am. Chem. Soc. 143, 14089–14096 (2021).Article 
CAS 
PubMed 

Google Scholar 
Yu, R., Cai, S., Li, C. & Fang, X. Nickel-catalyzed asymmetric hydroaryloxy- and hydroalkoxycarbonylation of cyclopropenes. Angew. Chem. Int. Ed. 61, e202200733 (2022).Article 
CAS 

Google Scholar 
Yuan, Y. et al. Copper-catalyzed carbonylative hydroamidation of styrenes to branched amides. Angew. Chem. Int. Ed. 59, 22441–22445 (2020).Article 
CAS 

Google Scholar 
Yuan, Y., Zhang, Y., Li, W., Zhao, Y. & Wu, X.-F. Regioselective and enantioselective copper-catalyzed hydroaminocarbonylation of unactivated alkenes and alkynes. Angew. Chem. Int. Ed. 62, e202309993 (2023).Article 
CAS 

Google Scholar 
Hu, H. et al. Enantioselective synthesis of 2-oxindole spirofused lactones and lactams by heck/carbonylative cylization sequences: method development and applications. Angew. Chem. Int. Ed. 58, 9225–9229 (2019).Article 
CAS 

Google Scholar 
Yuan, Z. et al. Constructing chiral bicyclo[3.2.1]octanes via palladium-catalyzed asymmetric tandem Heck/carbonylation desymmetrization of cyclopentenes. Nat. Commun. 11, 2544–2544 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. et al. Palladium-catalyzed enantioselective heck carbonylation with a monodentate phosphoramidite ligand: asymmetric synthesis of (+)-Physostigmine, (+)-Physovenine, and (+)-Folicanthine. Angew. Chem. Int. Ed. 59, 12199–12205 (2020).Article 
ADS 
CAS 

Google Scholar 
Wu, T., Zhou, Q. & Tang, W. Enantioselective α-carbonylative arylation for facile construction of chiral spirocyclic β, β′-diketones. Angew. Chem. Int. Ed. 60, 9978–9983 (2021).Article 
CAS 

Google Scholar 
Zhang, D. et al. Palladium-catalyzed enantioselective intramolecular heck carbonylation reactions: asymmetric synthesis of 2-oxindole ynones and carboxylic acids. Chem. Eur. J. 28, e202103670 (2021).Article 
ADS 
PubMed 

Google Scholar 
Li, Q. et al. Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes for the construction of chiral 3-azabicyclo [3.1.0] hexanes. Angew. Chem. Int. Ed. 62, e202211988 (2023).Article 
ADS 
CAS 

Google Scholar 
Zhang, Q., Xue, X., Hong, B. & Gu, Z. Torsional strain inversed chemoselectivity in a Pd-catalyzed atroposelective carbonylation reaction of dibenzothiophenium. Chem. Sci. 13, 3761–3765 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Han, J. et al. Enantioselective double carbonylation enabled by high-valent palladium catalysis. J. Am. Chem. Soc. 144, 21800–21807 (2022).Article 
CAS 
PubMed 

Google Scholar 
Alcocka, N. W., Brown, J. M. & Htimes, D. I. Synthesis and resolution of 1-(2-diphenylphosphino-1-naphthyl) isoquinoline; a P-N chelating ligand for asymmetric catalysis. Tetrahedron.: Asymmetry 4, 743–756 (1993).Article 

Google Scholar 
McCarthy, M., Goddard, R. & Guiry, P. J. The preparation and resolution of 2-phenyl-Quinazolinap, a new atropisomeric phosphinamine ligand for asymmetric catalysis. Tetrahedron.: Asymmetry 10, 2797–2807 (1999).Article 
CAS 

Google Scholar 
Cardoso, F. S. P., Abboud, K. A. & Aponick, A. Design, preparation, and implementation of an imidazole-based chiral biaryl P, N-ligand for asymmetric catalysis. J. Am. Chem. Soc. 135, 14548–14551 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jiang, P., Wu, S., Wang, G., Xiang, S. & Tan, B. Synthesis of axially chiral QUINAP derivatives by ketone-catalyzed enantioselective oxidation. Angew. Chem. Int. Ed. 62, e202309272 (2023).Article 
CAS 

Google Scholar 
Ros, A. et al. J. M. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 135, 15730–15733 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bhat, V., Wang, S., Stoltz, B. M. & Virgil, S. C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. J. Am. Chem. Soc. 135, 16829–16832 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ramírez-López, P. et al. Synthesis of IAN-type N, N-ligands via dynamic kinetic asymmetric buchwald–hartwig amination. J. Am. Chem. Soc. 138, 12053–120556 (2016).Article 
PubMed 

Google Scholar 
Carmona, J. et al. Dynamic kinetic asymmetric heck reaction for the simultaneous generation of central and axial chirality. J. Am. Chem. Soc. 140, 11067–111075 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jiang, X. et al. Construction of axial chirality via asymmetric radical trapping by cobalt under visible light. Nat. Catal. 5, 788–797 (2022).Article 
CAS 

Google Scholar 
Xiong, W. et al. Dynamic kinetic reductive conjugate addition for construction of axial chirality enabled by synergistic photoredox/cobalt catalysis. J. Am. Chem. Soc. 145, 7983–7991 (2023).Article 
CAS 
PubMed 

Google Scholar 
Sun, T. et al. Nickel-catalyzed enantioconvergent transformation of anisole derivatives via cleavage of C–OME bond. J. Am. Chem. Soc. 145, 15721–15728 (2023).Article 
CAS 
PubMed 

Google Scholar 
Dong, H. & Wang, C. Cobalt-catalyzed asymmetric reductive alkenylation and arylation of heterobiaryl tosylates: kinetic resolution or dynamic kinetic resolution? J. Am. Chem. Soc. 145, 26747–26755 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chen, X.-W. et al. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-biaryl Triflates with CO2. Angew. Chem. Int. Ed. 63, e202403401 (2024).Ramírez-López, P. et al. A dynamic kinetic c–p cross–coupling for the asymmetric synthesis of axially chiral P, N ligands. ACS Catal. 6, 3955–3964 (2016).Article 

Google Scholar 
Kakiuchi, F., Gendre, P. L., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron.: Asymmetry 11, 2647–2651 (2000).Article 
CAS 

Google Scholar 
Zheng, J. & You, S.-L. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative heck coupling of biaryl compounds with alkenes. Angew. Chem. Int. Ed. 53, 13244–13247 (2014).Article 
CAS 

Google Scholar 
Zheng, J., Cui, W., Zheng, C. & You, S.-L. Synthesis and application of chiral spiro cp ligands in rhodium-catalyzed asymmetric oxidative coupling of biaryl compounds with alkenes. J. Am. Chem. Soc. 138, 5242–5245 (2016).Article 
CAS 
PubMed 

Google Scholar 
Hornillos, V. et al. Synthesis of axially chiral heterobiaryl alkynes via dynamic kinetic asymmetric alkynylation. Chem. Commun. 53, 14121–14124 (2016).Article 

Google Scholar 
Wang, Q., Cai, Z., Liu, C., Gu, Q. & You, S.-L. Rhodium-catalyzed atroposelective C–H arylation: efficient synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 141, 9504–9510 (2019).Article 
CAS 
PubMed 

Google Scholar 
Wang, Q. et al. Rhodium-catalyzed atroposelective oxidative C–H/C–H cross-coupling reaction of 1-aryl isoquinoline derivatives with electron-rich heteroarenes. J. Am. Chem. Soc. 142, 15678–15685 (2020).Article 
CAS 
PubMed 

Google Scholar 
Romero-Arenas, A. et al. Ir-catalyzed atroposelective desymmetrization of heterobiaryls: hydroarylation of vinyl ethers and bicycloalkenes. J. Am. Chem. Soc. 142, 2628–2639 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zheng, D., Zhang, W., Gu, Q. & You, S.-L. Rh (III)-catalyzed atroposelective C–H iodination of 1-aryl isoquinolines. ACS Catal. 13, 5127–5134 (2023).Article 
CAS 

Google Scholar 
Yang, B., Gao, J., Tan, X., Ge, Y. & He, C. Chiral PSiSi-ligand enabled iridium-catalyzed atroposelective intermolecular C−H silylation. Angew. Chem. Int. Ed. 62, e202307812 (2023).Article 
CAS 

Google Scholar 
Vázquez-Domínguez, P., Romero-Arenas, A., Fernández, R., Lassaletta, J. M. & Ros, A. ir-catalyzed asymmetric hydroarylation of alkynes for the synthesis of axially chiral heterobiaryls. ACS Catal. 13, 42–48 (2023).Article 

Google Scholar 
Velázquez, M., Fernández, R., Lassaletta, J. M. & Monge, D. Asymmetric dearomatization of phthalazines by anion-binding catalysis. Org. Lett. 25, 8797–8802 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Hornillos, V. et al. Dynamic kinetic resolution of heterobiaryl ketones by zinc-catalyzed asymmetric hydrosilylation. Angew. Chem. Int. Ed. 57, 3777–3778 (2018).Article 
CAS 

Google Scholar 
Huth, S. E., Stone, H., Crotti, S. & Miller, S. On the ability of the N–O Bond to support a stable stereogenic axis: peptide-catalyzed atroposelective N-oxidation. J. Org. Chem. 88, 12857–12862 (2023).Article 
CAS 
PubMed 

Google Scholar 
Roussel, C. et al. Atropisomerism in the 2-arylimino-N-(2-hydroxyphenyl)thiazoline series:  influence of hydrogen bonding on the racemization process. J. Org. Chem. 73, 403–411 (2008).Article 
CAS 
PubMed 

Google Scholar 
Dial, B. E., Rasberry, R. D., Bullock, B. N., Smith, M. & Shimizu, K. D. Guest-accelerated molecular rotor. Org. Lett. 13, 244–247 (2011).Article 
CAS 
PubMed 

Google Scholar 
Dial, B. E., Pellechia, P. J., Smith, M. & Shimizu, K. D. Proton grease: an acid accelerated molecular rotor. J. Am. Chem. Soc. 134, 3675–3678 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y. et al. A multistage rotational speed changing molecular rotor regulated by pH and metal cations. Nat. Commun. 9, 1953 (2018).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Shimizu, K. D. et al. Large transition state stabilization from a weak hydrogen bond. Chem. Sci. 11, 7487–7494 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Fugard, A. J., Lahdenperä, A. S. K., Tan, J. S. J., Mekareeya, A. & Smith, M. Hydrogen-bond-enabled dynamic kinetic resolution of axially chiral amides mediated by a chiral counterion. Angew. Chem. Int. Ed. 58, 2795–2798 (2019).Article 
CAS 

Google Scholar 
Chen, J. et al. Copper-catalyzed enantioconvergent radical C(sp3)–N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. J. Am. Chem. Soc. 145, 14686–14696 (2023).Article 
CAS 
PubMed 

Google Scholar 
Wang, L. et al. A general copper-catalyzed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. Nat. Synth. 2, 430–438 (2023).Article 
ADS 

Google Scholar 
Zhou, H. et al. Copper-catalyzed chemo- and enantioselective radical 1,2-carbophosphonylation of styrenes. Angew. Chem. Int. Ed. 62, e202218523 (2023).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles