An ontology-based knowledge graph for representing interactions involving RNA molecules

Bartel, D. P. & Chen, C.-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan micrornas. Nature Reviews Genetics 5, 396–400, https://doi.org/10.1038/nrg1328 (2004).Article 
CAS 
PubMed 

Google Scholar 
Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding rnas. Nature 482, 339–346, https://doi.org/10.1038/nature10887 (2012).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cech, T. R. & Steitz, J. A. The noncoding rna revolution—trashing old rules to forge new ones. Cell 157, 77–94, https://doi.org/10.1016/j.cell.2014.03.008 (2014).Article 
CAS 
PubMed 

Google Scholar 
Iyer, M. K. et al. The landscape of long noncoding rnas in the human transcriptome. Nature genetics 47, 199–208, https://doi.org/10.1038/ng.3192 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lorenzi, L. et al. The rna atlas expands the catalog of human non-coding rnas. Nature biotechnology 39, 1453–1465, https://doi.org/10.1038/s41587-021-00936-1 (2021).Article 
CAS 
PubMed 

Google Scholar 
Keller, A. et al. mirnatissueatlas2: an update to the human mirna tissue atlas. Nucleic acids research 50, D211–D221, https://doi.org/10.1093/nar/gkab808 (2022).Article 
CAS 
PubMed 

Google Scholar 
Vo, J. N. et al. The landscape of circular rna in cancer. Cell 176, 869–881, https://doi.org/10.1016/j.cell.2018.12.021 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Damase, T. R. et al. The limitless future of rna therapeutics. Frontiers in Bioengineering and Biotechnology 9, https://doi.org/10.3389/fbioe.2021.628137 (2021).Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mrna vaccines and immunotherapies. Nature Biotechnology 40, 840–854, https://doi.org/10.1038/s41587-022-01294-2 (2022).Article 
CAS 
PubMed 

Google Scholar 
Carvalho, T. Personalized anti-cancer vaccine combining mrna and immunotherapy tested in melanoma trial. Nature Medicine 29, 2379–2380, https://doi.org/10.1038/d41591-023-00072-0 (2023).Article 
CAS 
PubMed 

Google Scholar 
Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding rna therapeutics — challenges and potential solutions. Nature Reviews Drug Discovery 20, 629–651, https://doi.org/10.1038/s41573-021-00219-z (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for rna therapeutics. Nature Reviews Genetics 23, 265–280, https://doi.org/10.1038/s41576-021-00439-4 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hombach, S. & Kretz, M.Non-coding RNAs: Classification, Biology and Functioning, 3-17 (Springer International Publishing, 2016).Hogan, A. et al. Knowledge graphs. ACM Computing Surveys 54, 1–37, https://doi.org/10.1145/3447772 (2021).Article 

Google Scholar 
Neo4j. Neo4j – the world’s leading graph database. Available at http://neo4j.org/ (2012).Beckett, D. & McBride, B. RDF/XML Syntax Specification (Revised) – W3C recommendation. Available at https://www.w3.org/TR/REC-rdf-syntax/ (2004).Alocci, D. et al. Property graph vs rdf triple store: A comparison on glycan substructure search. PLOS ONE 10, e0144578, https://doi.org/10.1371/journal.pone.0144578 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
OWL Working Group. Web ontology language (owl) – w3c recommendation. Available at https://www.w3.org/OWL/ (2012).Baader, F., Horrocks, I., Lutz, C. & Sattler, U.An Introduction to Description Logic (Cambridge University Press, 2017).Prud’hommeaux, E. & Seaborne, A. SPARQL Query Language for RDF – W3C recommendation. Available at https://www.w3.org/TR/rdf-sparql-query/ (2018).Chen, J. et al. Knowledge graphs for the life sciences: Recent developments, challenges and opportunities. Transactions on Graph Data Knowl. 1, 5:1–5:33, https://doi.org/10.4230/TGDK.1.1.5 (2023).Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. Scientific Data 10, https://doi.org/10.1038/s41597-023-01960-3 (2023).Callahan, T. J. et al. An open source knowledge graph ecosystem for the life sciences. Scientific Data 11, https://doi.org/10.1038/s41597-024-03171-w (2024).Evangelista, J. E. et al. Toxicology knowledge graph for structural birth defects. Communications Medicine 3, https://doi.org/10.1038/s43856-023-00329-2 (2023).Shefchek, K. A. et al. The monarch initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Research 48, D704–D715, https://doi.org/10.1093/nar/gkz997 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Boudin, M., Diallo, G., Drancé, M. & Mougin, F. The oregano knowledge graph for computational drug repurposing. Scientific Data 10, 871, https://doi.org/10.1038/s41597-023-02757-0 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Livingston, K. M., Bada, M., Baumgartner, W. A. & Hunter, L. E. Kabob: ontology-based semantic integration of biomedical databases. BMC Bioinformatics 16, https://doi.org/10.1186/s12859-015-0559-3 (2015).Mungall, C. et al. oborel/obo-relations: 2023-08-18 release. Zenodo https://doi.org/10.5281/zenodo.8263469 (2023).Cavalleri, E. et al. A meta-graph for the construction of an rna-centered knowledge graph. In Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L. J. & Ortuño, F. (eds.) Bioinformatics and Biomedical Engineering, 165–180, https://doi.org/10.1007/978-3-031-34953-9_13 (Springer Nature Switzerland, Cham, 2023).Halevy, A. Information integration. In Encyclopedia of Database Systems, 1490-1496, https://doi.org/10.1007/978-0-387-39940-9_1069 (Springer US, 2009).Mesiti, M. et al. Xml-based approaches for the integration of heterogeneous bio-molecular data. BMC Bioinformatics 10, https://doi.org/10.1186/1471-2105-10-s12-s7 (2009).Bonfitto, S., Casiraghi, E. & Mesiti, M. Table understanding approaches for extracting knowledge from heterogeneous tables. WIREs Data Mining and Knowledge Discovery 11, https://doi.org/10.1002/widm.1407 (2021).Poggi, A. et al. Linking data to ontologies. In Spaccapietra, S. (ed.) Journal on Data Semantics X, 133–173 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).Das, S., Sundara, S. & Cyganiak, R. R2rml: Rdb to rdf mapping language – w3c recommendation. Available at https://www.w3.org/TR/r2rml/ (2012).Dimou, A. et al. RML: a generic language for integrated RDF mappings of heterogeneous data. In Bizer, C., Heath, T., Auer, S. & Berners-Lee, T. (eds.) Proceedings of the 7th Workshop on Linked Data on the Web, vol. 1184 of CEUR Workshop Proceedings (2014).Lefrançois, M., Zimmermann, A. & Bakerally, N. A sparql extension for generating rdf from heterogeneous formats. In Blomqvist, E. et al. (eds.) The Semantic Web, 35–50 https://doi.org/10.1007/978-3-319-58068-5_3 (Springer International Publishing, Cham, 2017).Heyvaert, P., De Meester, B., Dimou, A. & Verborgh, R.Declarative Rules for Linked Data Generation at Your Fingertips!, 213-217 (Springer International Publishing, 2018).García-González, H., Boneva, I., Staworko, S., Labra-Gayo, J. E. & Cueva Lovelle, J. M. Shexml: improving the usability of heterogeneous data mapping languages for first-time users. PeerJ Computer Science 6, e318, https://doi.org/10.7717/peerj-cs.318 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhang, S. et al. A graph-based approach for integrating biological heterogeneous data based on connecting ontology. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) https://doi.org/10.1109/bibm52615.2021.9669700 (IEEE, 2021).Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29, https://doi.org/10.1038/75556 (2000).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pan, Q. et al. Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and phenomics. BMC Genomics 20, https://doi.org/10.1186/s12864-019-5812-0 (2019).Schriml, L. M. et al. The human disease ontology 2022 update. Nucleic Acids Research 50, D1255–D1261, https://doi.org/10.1093/nar/gkab1063 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Cooper, L. & Jaiswal, P.The Plant Ontology: A Tool for Plant Genomics, 89-114 (Springer New York, 2016).Robinson, P. N. et al. The human phenotype ontology: A tool for annotating and analyzing human hereditary disease. The American Journal of Human Genetics 83, 610–615, https://doi.org/10.1016/j.ajhg.2008.09.017 (2008).Article 
CAS 
PubMed 

Google Scholar 
CDC – Centers for Disease Control and Prevention. Learn about specific birth defects. Available at https://www.cdc.gov/ncbddd/birthdefects/types.html (2023).Lachmann, A. et al. Geneshot: search engine for ranking genes from arbitrary text queries. Nucleic Acids Research 47, W571–W577, https://doi.org/10.1093/nar/gkz393 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Avram, S. et al. Drugcentral 2021 supports drug discovery and repositioning. Nucleic Acids Research 49, D1160–D1169, https://doi.org/10.1093/nar/gkaa997 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Evangelista, J. E. et al. SigCom LINCS: data and metadata search engine for a million gene expression signatures. Nucleic Acids Research 50, W697–W709, https://doi.org/10.1093/nar/gkac328 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sima, A. C. et al. Enabling semantic queries across federated bioinformatics databases. Database 2019, baz106, https://doi.org/10.1093/database/baz106 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sparmann, AnkeandVogel,J. örg Rna-based medicine: from molecular mechanisms to therapy. The EMBO Journal 42, e114760, https://doi.org/10.15252/embj.2023114760 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vorländer, M. K., Pacheco-Fiallos, B. & Plaschka, C. Structural basis of mrna maturation: Time to put it together. Current Opinion in Structural Biology 75, 102431, https://doi.org/10.1016/j.sbi.2022.102431 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mattick, J. S. et al. Long non-coding rnas: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology 24, 430–447, https://doi.org/10.1038/s41580-022-00566-8 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L. et al. LncRNAWiki 2.0: a knowledgebase of human long non-coding RNAs with enhanced curation model and database system. Nucleic Acids Research 50, D190–D195, https://doi.org/10.1093/nar/gkab998 (2022).Article 
CAS 
PubMed 

Google Scholar 
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding rnas and its biological functions. Nat Rev Mol Cell Biol 22, 96–118, https://doi.org/10.1038/s41580-020-00315-9 (2021).Article 
CAS 
PubMed 

Google Scholar 
Vance, K. & CP, P. Transcriptional regulatory functions of nuclear long noncoding rnas. Trends Genet. 30, 348–55, https://doi.org/10.1016/j.tig.2014.06.001 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nisar, S. et al. Insights into the role of circrnas: Biogenesis, characterization, functional, and clinical impact in human malignancies. Frontiers in Cell and Developmental Biology 9, https://doi.org/10.3389/fcell.2021.617281 (2021).Loda, A. & Heard, E. Xist rna in action: Past, present, and future. PLoS genetics 15, e1008333, https://doi.org/10.1371/journal.pgen.1008333 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kanduri, C. Kcnq1ot1: a chromatin regulatory rna. Seminars in Cell & Developmental Biology 22, 343–350, https://doi.org/10.1016/j.semcdb.2011.02.020 (2011).Article 
CAS 

Google Scholar 
Yang, Z. et al. Insights into the role of long non-coding rnas in dna methylation mediated transcriptional regulation. Frontiers in molecular biosciences 9, 1067406, https://doi.org/10.3389/fmolb.2022.1067406 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hannon, G. J. Rna interference. Nature 418, 244–251, https://doi.org/10.1038/418244a (2002).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Stephen, B. J. et al. Xeno-mirna in maternal-infant immune crosstalk: An aid to disease alleviation. Frontiers in Immunology 11, https://doi.org/10.3389/fimmu.2020.00404 (2020).Lee, J. & JT, M. Antisense-mediated transcript knockdown triggers premature transcription termination. Mol Cell. 77, 1044–1054, https://doi.org/10.1016/j.molcel.2019.12.011 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yu, A.-M., Choi, Y. H. & Tu, M.-J. Rna drugs and rna targets for small molecules: Principles, progress, and challenges. Pharmacological Reviews 72, 862–898, https://doi.org/10.1124/pr.120.019554 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nature Reviews Chemistry 1, 0076, https://doi.org/10.1038/s41570-017-0076 (2017).Article 
CAS 

Google Scholar 
Byun, J. Recent progress and opportunities for nucleic acid aptamers. Life 11, 193, https://doi.org/10.3390/life11030193 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ştefan, G., Hosu, O., De Wael, K., Lobo-Castañón, M. J. & Cristea, C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta 376, 137994, https://doi.org/10.1016/j.electacta.2021.137994 (2021).Article 
CAS 

Google Scholar 
Machtel, P., Bakowska-Å»ywicka, K. & Å»ywicki, M. Emerging applications of riboswitches – from antibacterial targets to molecular tools. Journal of Applied Genetics 57, 531–541, https://doi.org/10.1007/s13353-016-0341-x (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Linlin, S., Brianna Marie, L. & Yuan-Xiang, T. The crispr/cas9 system for gene editing and its potential application in pain research. Translational Perioperative and Pain Medicine 3, https://doi.org/10.31480/2330-4871/040 (2016).Wang, X. et al. Knowledge graph quality control: A survey. Fundamental Researchhttps://doi.org/10.1016/j.fmre.2021.08.018 (2021).The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2020).Sweeney, B. A. et al. Rnacentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research 49, D212–D220, https://doi.org/10.1093/nar/gkaa921 (2020).Article 
CAS 

Google Scholar 
Cantelli, G. et al. The european bioinformatics institute (embl-ebi) in 2021. Nucleic Acids Research 50, D11–D19, https://doi.org/10.1093/nar/gkab1127 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).Article 
CAS 
PubMed 

Google Scholar 
Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences 85, 2444–2448, https://doi.org/10.1073/pnas.85.8.2444 (1988).Article 
ADS 
CAS 

Google Scholar 
Guo, L., Sun, B., Wu, Q., Yang, S. & Chen, F. mirna-mirna interaction implicates for potential mutual regulatory pattern. Gene 511, 187–194, https://doi.org/10.1016/j.gene.2012.09.066 (2012).Article 
CAS 
PubMed 

Google Scholar 
Lai, E. C., Wiel, C. & Rubin, G. M. Complementary mirna pairs suggest a regulatory role for mirna:mirna duplexes. RNA 10, 171–175, https://doi.org/10.1261/rna.5191904 (2004).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Spear, A. D., Ceusters, W. & Smith, B. Functions in basic formal ontology. Applied Ontology 11, 103–128, https://doi.org/10.3233/ao-160164 (2016).Article 

Google Scholar 
Callahan, T. J. et al. Owl-nets: Transforming owl representations for improved network inference. In Biocomputing 2018, https://doi.org/10.1142/9789813235533_0013 (WORLD SCIENTIFIC, 2017).Cappelletti, L. et al. Grape for fast and scalable graph processing and random-walk-based embedding. Nature Computational Science 3, 552–568, https://doi.org/10.1038/s43588-023-00465-8 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Blazegraph™. Blazegraph™ DB. Available at https://blazegraph.com/.Cavalleri, E. et al. Rna-kg: 2024-05-21 release. Zenodo https://doi.org/10.5281/zenodo.11236947 (2024).Wang, J. et al. pirbase: integrating pirna annotation in all aspects. Nucleic Acids Research 50, D265–D272, https://doi.org/10.1093/nar/gkab1012 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Rosenkranz, D., Zischler, H. & Gebert, D. pirnaclusterdb 2.0: update and expansion of the pirna cluster database. Nucleic Acids Research 50, D259–D264, https://doi.org/10.1093/nar/gkab622 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Salzberg, S. L. Open questions: How many genes do we have?BMC Biology 16, https://doi.org/10.1186/s12915-018-0564-x (2018).Grover, A. & Leskovec, J. Node2vec: Scalable feature learning for networks. In Proc. of the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, KDD ’16, 855-864, https://doi.org/10.1145/2939672.2939754 (ACM, New York, NY, USA, 2016).Fernández-Moreno, R., Torre-Cisneros, J. & Cantisán, S. Human cytomegalovirus (hcmv)-encoded micrornas: potential biomarkers and clinical applications. RNA Biology 18, 2194–2202, https://doi.org/10.1080/15476286.2021.1930757 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Peng, Q. et al. Foxa1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing mir-100-5p and mir-125b-5p. Journal of Cancer 11, 2485–2495, https://doi.org/10.7150/jca.40709 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Alstott, J., Bullmore, E. & Plenz, D. powerlaw: A python package for analysis of heavy-tailed distributions. PLoS ONE 9, e85777, https://doi.org/10.1371/journal.pone.0085777 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Review 51, 661–703, https://doi.org/10.1137/070710111 (2009).Article 
ADS 
MathSciNet 

Google Scholar 
Bodlaender, H. L. & Koster, A. M. Treewidth computations i. upper bounds. Information and Computation 208, 259–275, https://doi.org/10.1016/j.ic.2009.03.008 (2010).Article 
MathSciNet 

Google Scholar 
Zhang, Y., Qian, H., He, J. & Gao, W. Mechanisms of trna-derived fragments and trna halves in cancer treatment resistance. Biomarker Research 8 https://doi.org/10.1186/s40364-020-00233-0 (2020).Valentini, G., Paccanaro, A., Caniza, H., Romero, A. E. & Re, M. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artificial Intelligence in Medicine 61, 63–78, https://doi.org/10.1016/j.artmed.2014.03.003 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Cappelletti, L. et al. Node-degree aware edge sampling mitigates inflated classification performance in biomedical random walk-based graph representation learning. Bioinformatics Advances 4, vbae036, https://doi.org/10.1093/bioadv/vbae036 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 
Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: Methods and applications. IEEE Data Eng. Bull. 40, 52–74 (2017).Yang, C., Xiao, Y., Zhang, Y., Sun, Y. & Han, J. Heterogeneous network representation learning: A unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data Engineering 34, 4854–4873, https://doi.org/10.1109/tkde.2020.3045924 (2022).Article 
PubMed 

Google Scholar 
Johnson, R., Li, M. M., Noori, A., Queen, O. & Zitnik, M. Graph artificial intelligence in medicine. Annu. Rev. Biomed. Data Sci. https://doi.org/10.1146/annurev-biodatasci-110723-024625 (2024).Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nature Biomedical Engineering 6, 1353–1369, https://doi.org/10.1038/s41551-022-00942-x (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Vasilevsky, N. A. et al. Mondo: Unifying diseases for the world, by the world. Preprint at https://doi.org/10.1101/2022.04.13.22273750 (2022).He, Y. et al. Vo: Vaccine ontology. Nature Precedings https://doi.org/10.1038/npre.2009.3553.1 (2009).Degtyarenko, K. et al. Chebi: a database and ontology for chemical entities of biological interest. Nucleic Acids Research 36, D344–D350, https://doi.org/10.1093/nar/gkm791 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. Genome Biology 13, R5, https://doi.org/10.1186/gb-2012-13-1-r5 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
Sarntivijai, S. et al. Clo: The cell line ontology. Journal of Biomedical Semantics 5, 37, https://doi.org/10.1186/2041-1480-5-37 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Natale, D. A. et al. The protein ontology: a structured representation of protein forms and complexes. Nucleic Acids Research 39, D539–D545, https://doi.org/10.1093/nar/gkq907 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eilbeck, K. et al. The sequence ontology: a tool for the unification of genome annotations. Genome Biology 6, https://doi.org/10.1186/gb-2005-6-5-r44 (2005).Petri, V. et al. The pathway ontology – updates and applications. Journal of Biomedical Semantics 5, 7, https://doi.org/10.1186/2041-1480-5-7 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. mirbase: from microrna sequences to function. Nucleic Acids Research 47, D155–D162, https://doi.org/10.1093/nar/gky1141 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Chen, Y. & Wang, X. mirdb: an online database for prediction of functional microrna targets. Nucleic Acids Research 48, D127–D131, https://doi.org/10.1093/nar/gkz757 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Fan, Y., Habib, M. & Xia, J. Xeno-mirnet: a comprehensive database and analytics platform to explore xeno-mirnas and their potential targets. PeerJ 6, e5650, https://doi.org/10.7717/peerj.5650 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xiao, F. et al. mirecords: an integrated resource for microrna-target interactions. Nucleic Acids Research 37, D105–D110, https://doi.org/10.1093/nar/gkn851 (2009).Article 
CAS 
PubMed 

Google Scholar 
Huang, Z. et al. Hmdd v3.0: a database for experimentally supported human microrna-disease associations. Nucleic Acids Research 47, D1013–D1017, https://doi.org/10.1093/nar/gky1010 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Dai, E. et al. Epimir: a database of curated mutual regulation between mirnas and epigenetic modifications. Database 2014, https://doi.org/10.1093/database/bau023 (2014).Jiang, Q. et al. mir2disease: a manually curated database for microrna deregulation in human disease. Nucleic Acids Research 37, D98–D104, https://doi.org/10.1093/nar/gkn714 (2009).Article 
CAS 
PubMed 

Google Scholar 
McGeary, S. E. et al. The biochemical basis of microrna targeting efficacy. Science 366 https://doi.org/10.1126/science.aav1741 (2019).Bhattacharya, A. & Cui, Y. Somamir 2.0: a database of cancer somatic mutations altering microrna-cerna interactions. Nucleic Acids Research 44, D1005–D1010, https://doi.org/10.1093/nar/gkv1220 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Karagkouni, D. et al. Diana-tarbase v8: a decade-long collection of experimentally supported mirna-gene interactions. Nucleic Acids Research 46, D239–D245, https://doi.org/10.1093/nar/gkx1141 (2017).Article 
CAS 
PubMed Central 

Google Scholar 
Huang, H.-Y. et al. mirtarbase update 2022: an informative resource for experimentally validated mirna-target interactions. Nucleic Acids Research 50, D222–D230, https://doi.org/10.1093/nar/gkab1079 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Liu, X. et al. Sm2mir: a database of the experimentally validated small molecules’ effects on microrna expression. Bioinformatics 29, 409–411, https://doi.org/10.1093/bioinformatics/bts698 (2012).Article 
CAS 
PubMed 

Google Scholar 
Tong, Z., Cui, Q., Wang, J. & Zhou, Y. Transmir v2.0: an updated transcription factor-microrna regulation database. Nucleic Acids Research 47, D253–D258, https://doi.org/10.1093/nar/gky1023 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Bhattacharya, A., Ziebarth, J. D. & Cui, Y. Polymirts database 3.0: linking polymorphisms in micrornas and their target sites with human diseases and biological pathways. Nucleic Acids Research 42, D86–D91, https://doi.org/10.1093/nar/gkt1028 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Xu, F. et al. dbdemc 3.0: Functional exploration of differentially expressed mirnas in cancers of human and model organisms. Genomics, Proteomics & Bioinformatics 20, 446–454, https://doi.org/10.1016/j.gpb.2022.04.006 (2022).Article 

Google Scholar 
Lu, M., Shi, B., Wang, J., Cao, Q. & Cui, Q. Tam: A method for enrichment and depletion analysis of a microrna category in a list of micrornas. BMC Bioinformatics 11, https://doi.org/10.1186/1471-2105-11-419 (2010).Bandyopadhyay, S. & Bhattacharyya, M. Putmir: A database for extracting neighboring transcription factors of human micrornas. BMC Bioinformatics 11, https://doi.org/10.1186/1471-2105-11-190 (2010).Kehl, T. et al. mirpathdb 2.0: a novel release of the mirna pathway dictionary database. Nucleic Acids Research 48, D142–D147, https://doi.org/10.1093/nar/gkz1022 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Xie, B., Ding, Q., Han, H. & Wu, D. mircancer: a microrna-cancer association database constructed by text mining on literature. Bioinformatics 29, 638–644, https://doi.org/10.1093/bioinformatics/btt014 (2013).Article 
CAS 
PubMed 

Google Scholar 
Bruno, A. E. et al. mirdsnp: a database of disease-associated snps and microrna target sites on 3’utrs of human genes. BMC Genomics 13, https://doi.org/10.1186/1471-2164-13-44 (2012).Russo, F. et al. mirandola 2017: a curated knowledge base of non-invasive biomarkers. Nucleic Acids Research 46, D354–D359, https://doi.org/10.1093/nar/gkx854 (2017).Article 
CAS 
PubMed Central 

Google Scholar 
Wishart, D. S. et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Research 46, D1074–D1082, https://doi.org/10.1093/nar/gkx1037 (2017).Article 
CAS 
PubMed Central 

Google Scholar 
Lindstrom, M. The MIT/ICBP siRNA Database. Available at https://web.mit.edu/sirna/links.html (2009).Aptagen, LLC. Apta-Index™ (Aptamer Database). Available at https://www.aptagen.com/apta-index/ (2023).Chiba, S. et al. eskip-finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping. Nucleic Acids Research 49, W193–W198, https://doi.org/10.1093/nar/gkab442 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kamens, J. The addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Research 43, D1152–D1157, https://doi.org/10.1093/nar/gku893 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Z. et al. Lncbook 2.0: integrating human long non-coding rnas with multi-omics annotations. Nucleic Acids Research 51, D186–D191, https://doi.org/10.1093/nar/gkac999 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Chen, G. et al. Lncrnadisease: a database for long-non-coding rna-associated diseases. Nucleic Acids Research 41, D983–D986, https://doi.org/10.1093/nar/gks1099 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, Z. et al. Lncexpdb: an expression database of human long non-coding rnas. Nucleic Acids Research 49, D962–D968, https://doi.org/10.1093/nar/gkaa850 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Zhang, Y.-Y., Zhang, W.-Y., Xin, X.-H. & Du, P.-F. dbesslnc: A manually curated database of human and mouse essential lncrna genes. Computational and Structural Biotechnology Journal 20, 2657–2663, https://doi.org/10.1016/j.csbj.2022.05.043 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mas-Ponte, D. et al. Lncatlas database for subcellular localization of long noncoding rnas. RNA 23, 1080–1087, https://doi.org/10.1261/rna.060814.117 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, L. et al. Noncodev6: an updated database dedicated to long non-coding rna annotation in both animals and plants. Nucleic Acids Research 49, D165–D171, https://doi.org/10.1093/nar/gkaa1046 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Gao, Y. et al. Lnc2cancer 3.0: an updated resource for experimentally supported lncrna/circrna cancer associations and web tools based on rna-seq and scrna-seq data. Nucleic Acids Research 49, D1251–D1258, https://doi.org/10.1093/nar/gkaa1006 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Liu, L. et al. Lncrnawiki 2.0: a knowledgebase of human long non-coding rnas with enhanced curation model and database system. Nucleic Acids Research 50, D190–D195, https://doi.org/10.1093/nar/gkab998 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Karagkouni, D. et al. Diana-lncbase v3: indexing experimentally supported mirna targets on non-coding transcripts. Nucleic Acids Researchhttps://doi.org/10.1093/nar/gkz1036 (2019).Li, J. et al. Tanric: An interactive open platform to explore the function of lncrnas in cancer. Cancer Research 75, 3728–3737, https://doi.org/10.1158/0008-5472.can-15-0273 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Deng, J. et al. Ribocentre: a database of ribozymes. Nucleic Acids Research 51, D262–D268, https://doi.org/10.1093/nar/gkac840 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microrna families. Nucleic Acids Research 49, D192–D200, https://doi.org/10.1093/nar/gkaa1047 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Marchand, J. A., Pierson Smela, M. D., Jordan, T. H. H., Narasimhan, K. & Church, G. M. Tbdb: a database of structurally annotated t-box riboswitch:trna pairs. Nucleic Acids Research 49, D229–D235, https://doi.org/10.1093/nar/gkaa721 (2020).Article 
CAS 
PubMed Central 

Google Scholar 
Penchovsky, R., Pavlova, N. & Kaloudas, D. Rswitch: A novel bioinformatics database on riboswitches as antibacterial drug targets. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18, 804–808, https://doi.org/10.1109/tcbb.2020.2983922 (2021).Article 
CAS 
PubMed 

Google Scholar 
Kumar, P., Mudunuri, S. B., Anaya, J. & Dutta, A. trfdb: a database for transfer rna fragments. Nucleic Acids Research 43, D141–D145, https://doi.org/10.1093/nar/gku1138 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J.-H. et al. tsrfun: a comprehensive platform for decoding human tsrna expression, functions and prognostic value by high-throughput small rna-seq and clip-seq data. Nucleic Acids Research 50, D421–D431, https://doi.org/10.1093/nar/gkab1023 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Pliatsika, V., Loher, P., Telonis, A. G. & Rigoutsos, I. Mintbase: a framework for the interactive exploration of mitochondrial and nuclear trna fragments. Bioinformatics 32, 2481–2489, https://doi.org/10.1093/bioinformatics/btw194 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lee, B. D., Neri, U., Oh, C. J., Simmonds, P. & Koonin, E. V. Viroiddb: a database of viroids and viroid-like circular rnas. Nucleic Acids Research 50, D432–D438, https://doi.org/10.1093/nar/gkab974 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Bouchard-Bourelle, P. et al. snodb: an interactive database of human snorna sequences, abundance and interactions. Nucleic Acids Research 48, D220–D225, https://doi.org/10.1093/nar/gkz884 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Jühling, F. et al. trnadb 2009: compilation of trna sequences and trna genes. Nucleic Acids Research 37, D159–D162, https://doi.org/10.1093/nar/gkn772 (2009).Article 
CAS 
PubMed 

Google Scholar 
Chan, P. P. & Lowe, T. M. Gtrnadb 2.0: an expanded database of transfer rna genes identified in complete and draft genomes. Nucleic Acids Research 44, D184–D189, https://doi.org/10.1093/nar/gkv1309 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hou, J., Wei, H. & Liu, B. ipida-gcn: Identification of pirna-disease associations based on graph convolutional network. PLOS Computational Biology 18, e1010671, https://doi.org/10.1371/journal.pcbi.1010671 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gupta, P., Das, G., Chattopadhyay, T., Ghosh, Z. & Mallick, B. Tarpid, a database of putative and validated targets of pirnas. Mol. Omics 19, 706–713, https://doi.org/10.1039/D3MO00098B (2023).Article 
CAS 
PubMed 

Google Scholar 
Kang, J. et al. Rnainter v4.0: Rna interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Research 50, D326–D332, https://doi.org/10.1093/nar/gkab997 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Cui, T. et al. Rnalocate v2.0: an updated resource for rna subcellular localization with increased coverage and annotation. Nucleic Acids Research 50, D333–D339, https://doi.org/10.1093/nar/gkab825 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Chen, J. et al. Rnadisease v4.0: an updated resource of rna-associated diseases, providing rna-disease analysis, enrichment and prediction. Nucleic Acids Research 51, D1397–D1404, https://doi.org/10.1093/nar/gkac814 (2022).Article 
PubMed Central 

Google Scholar 
Wu, D. et al. ncrdeathdb: A comprehensive bioinformatics resource for deciphering network organization of the ncrna-mediated cell death system. Autophagy 11, 1917–1926, https://doi.org/10.1080/15548627.2015.1089375 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Huang, Y. et al. cncrnadb: a manually curated resource of experimentally supported rnas with both protein-coding and noncoding function. Nucleic Acids Research 49, D65–D70, https://doi.org/10.1093/nar/gkaa791 (2020).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Cheng, J. et al. Virbase v3.0: a virus and host ncrna-associated interaction repository with increased coverage and annotation. Nucleic Acids Research 50, D928–D933, https://doi.org/10.1093/nar/gkab1029 (2021).Article 
CAS 
PubMed Central 

Google Scholar 
Pathan, M. et al. Vesiclepedia 2019: a compendium of rna, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Research 47, D516–D519, https://doi.org/10.1093/nar/gky1029 (2018).Article 
CAS 
PubMed Central 

Google Scholar 
Zhang, Y. et al. Directrmdb: a database of post-transcriptional rna modifications unveiled from direct rna sequencing technology. Nucleic Acids Research 51, D106–D116, https://doi.org/10.1093/nar/gkac1061 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Boccaletto, P. et al. Modomics: a database of rna modification pathways. 2021 update. Nucleic Acids Research 50, D231–D235, https://doi.org/10.1093/nar/gkab1083 (2021).Article 
CAS 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles