Synthesis of N-heterocycles through alcohol dehydrogenative coupling

Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. Nat. Rev. Drug Discov. 13, 577–587 (2014).Article 
CAS 
PubMed 

Google Scholar 
Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C. & Reynolds, C. H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 13, 105–121 (2014).Article 
CAS 
PubMed 

Google Scholar 
Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).Article 
CAS 
PubMed 

Google Scholar 
Rotella, D. P. in Advances in Heterocyclic Chemistry vol. 134 (eds Meanwell, N. A. & Lolli, M. L.) 149–183 (Academic Press, 2021).Kabir, E. & Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Res. Chem. 4, 100606 (2022).CAS 

Google Scholar 
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Het. Comp. 48, 7–10 (2012).Article 
CAS 

Google Scholar 
Heravi, M. M. & Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10, 44247–44311 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Estévez, V., Villacampa, M. & Menéndez, J. C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev. 39, 4402–4421 (2010).Article 
PubMed 

Google Scholar 
Hill, M. D. Recent strategies for the synthesis of pyridine derivatives. Chem. Eur. J. 16, 12052–12062 (2010).Article 
CAS 
PubMed 

Google Scholar 
Marco-Contelles, J., Pérez-Mayoral, E., Samadi, A., Carreiras, M. d. C. & Soriano, E. Recent advances in the Friedländer reaction. Chem. Rev. 109, 2652–2671 (2009).Article 
CAS 
PubMed 

Google Scholar 
Ran, L., Ren, Z.-H., Wang, Y.-Y. & Guan, Z.-H. Copper-catalyzed homocoupling of ketoxime carboxylates for synthesis of symmetrical pyrroles. Green. Chem. 16, 112–115 (2014).Article 
CAS 

Google Scholar 
Wang, Y., Zhang, W.-X. & Xi, Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem. Soc. Rev. 49, 5810–5849 (2020).Article 
CAS 

Google Scholar 
Tamatam, R. & Shin, D. Recent advances in the transition-metal-free synthesis of quinazolines. Molecules 28, 3227 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Horváth, I. T. Introduction: sustainable chemistry. Chem. Rev. 118, 369–371 (2018).Article 
PubMed 

Google Scholar 
Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).Article 
CAS 
PubMed 

Google Scholar 
Besson, M., Gallezot, P. & Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014).Article 
CAS 
PubMed 

Google Scholar 
Luk, H. T., Mondelli, C., Ferré, D. C., Stewart, J. A. & Pérez-Ramírez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1426 (2017).Article 
CAS 
PubMed 

Google Scholar 
Alonso, D. M., Bond, J. Q. & Dumesic, J. A. Catalytic conversion of biomass to biofuels. Green. Chem. 12, 1493–1513 (2010).Article 
CAS 

Google Scholar 
Vispute, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).Article 
CAS 
PubMed 

Google Scholar 
Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).Article 
PubMed 

Google Scholar 
Subaramanian, M., Sivakumar, G. & Balaraman, E. First-row transition-metal catalyzed acceptorless dehydrogenation and related reactions: a personal account. Chem. Rec. 21, 3839–3871 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mondal, A., Sharma, R., Pal, D. & Srimani, D. Recent progress in the synthesis of heterocycles through base Metal-Catalyzed acceptorless dehydrogenative and borrowing hydrogen approach. Eur. J. Org. Chem. 2021, 3690–3720 (2021).Article 
CAS 

Google Scholar 
Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).Article 
CAS 
PubMed 

Google Scholar 
Paul, B., Maji, M., Chakrabarti, K. & Kundu, S. Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Org. Biomol. Chem. 18, 2193–2214 (2020).Article 
CAS 
PubMed 

Google Scholar 
Roy, B. C., Ganguli, K., Samim, S. A. & Kundu, S. Alkyl phosphine free, metal-ligand cooperative complex catalyzed alcohol dehydrogenative coupling reactions. Asian J. Org. Chem. 10, 1218–1232 (2021).Article 
CAS 

Google Scholar 
Michlik, S. & Kempe, R. A sustainable catalytic pyrrole synthesis. Nat. Chem. 5, 140–144 (2013).Article 
CAS 
PubMed 

Google Scholar 
Maji, M., Panja, D., Borthakur, I. & Kundu, S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org. Chem. Front. 8, 2673–2709 (2021).Article 
CAS 

Google Scholar 
Sun, K., Shan, H., Lu, G.-P., Cai, C. & Beller, M. Synthesis of N-heterocycles via oxidant-free dehydrocyclization of alcohols using heterogeneous catalysts. Angew. Chem. Int. Ed. 60, 25188–25202 (2021).Article 
CAS 

Google Scholar 
Mukherjee, A. & Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 8, 11435–11469 (2018).Article 
CAS 

Google Scholar 
Mastalir, M., Glatz, M., Pittenauer, E., Allmaier, G. & Kirchner, K. Sustainable synthesis of quinolines and pyrimidines catalyzed by manganese PNP pincer complexes. J. Am. Chem. Soc. 138, 15543–15546 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sun, K., Li, D., Lu, G.-P. & Cai, C. Hydrogen auto-transfer synthesis of quinoxalines from o-nitroanilines and biomass-based diols catalyzed by MOF-derived N,P Co-doped cobalt catalysts. ChemCatChem 13, 373–381 (2021).Article 
CAS 

Google Scholar 
Su, T., Sun, K., Lu, G. & Cai, C. Synthesis of quinazolinones via a tandem hydrogen-transfer strategy catalyzed by N,S Co-doped carbon-anchored Co nanoparticles. ACS Sustain. Chem. Eng. 10, 3872–3881 (2022).Article 
CAS 

Google Scholar 
Wang, F. et al. KOtBu-mediated transition-metal-free synthesis of pyrimidines by selective three-component coupling reactions: a mechanistic insight. Tetrahedron 123, 132985 (2022).Article 
CAS 

Google Scholar 
Maji, M., Borthakur, I., Guria, S., Singha, S. & Kundu, S. Direct access to 2-(N-alkylamino)pyrimidines via ruthenium catalyzed tandem multicomponent annulation/N-alkylation. J. Catal. 402, 37–51 (2021).Article 
CAS 

Google Scholar 
Maji, M., Chakrabarti, K., Panja, D. & Kundu, S. Sustainable synthesis of N-heterocycles in water using alcohols following the double dehydrogenation strategy. J. Catal. 373, 93–102 (2019).Article 
CAS 

Google Scholar 
Chakrabarti, K., Maji, M. & Kundu, S. Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green. Chem. 21, 1999–2004 (2019).Article 
CAS 

Google Scholar 
Maji, M., Chakrabarti, K., Paul, B., Roy, B. C. & Kundu, S. Ruthenium(II)-NNN-pincer-complex-catalyzed reactions between various alcohols and amines for sustainable C−N and C−C bond formation. Adv. Synth. Catal. 360, 722–729 (2018).Article 
CAS 

Google Scholar 
Paul, B., Chakrabarti, K. & Kundu, S. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments. Dalton Trans. 45, 11162–11171 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gupta, S., Maji, A., Panja, D., Halder, M. & Kundu, S. CuO NPs catalyzed synthesis of quinolines, pyridines, and pyrroles via dehydrogenative coupling strategy. J. Catal. 413, 1017–1027 (2022).Article 
CAS 

Google Scholar 
Panja, D. et al. Utilization of caffeine carbon supported cobalt catalyst in the tandem synthesis of pyrroles from nitroarenes and alkenyl diols. J. Catal. 402, 244–254 (2021).Article 
CAS 

Google Scholar 
Panja, D., Paul, B., Balasubramaniam, B., Gupta, R. K. & Kundu, S. Application of a reusable Co-based nanocatalyst in alcohol dehydrogenative coupling strategy: synthesis of quinoxaline and imine scaffolds. Catal. Commun. 137, 105927 (2020).Article 
CAS 

Google Scholar 
Elslager, E. F. et al. Synthesis and antimalarial effects of N2-aryl-N4-[(dialkylamino)alkyl]- and N4-aryl-N2-[(dialkylamino)alkyl]-2,4-quinazolinediamines. J. Med. Chem. 24, 127–140 (1981).Article 
CAS 
PubMed 

Google Scholar 
DiMauro, E. F. et al. Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: synthesis, SAR, and in vivo anti-inflammatory activity. J. Med. Chem. 49, 5671–5686 (2006).Article 
CAS 
PubMed 

Google Scholar 
Andrus, M. B., Mettath, S. N. & Song, C. A modified synthesis of iodoazidoaryl prazosin. J. Org. Chem. 67, 8284–8286 (2002).Article 
CAS 
PubMed 

Google Scholar 
Ayaz, M., Xu, Z. & Hulme, C. Novel succinct routes to quinoxalines and 2-benzimidazolylquinoxalines via the Ugi reaction. Tetrahedron Lett. 55, 3406–3409 (2014).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wright, J. B. The chemistry of the benzimidazoles. Chem. Rev. 48, 397–541 (1951).Article 
CAS 
PubMed 

Google Scholar 
Hsueh, J.-C., Szu, F.-E., Yu, Y.-Y. & Leung, M.-K. ortho-Lithiation driven one-pot synthesis of quinazolines via [2 + 2 + 2] cascade annulation of halofluorobenzenes with nitriles. Org. Biomol. Chem. 21, 5297–5304 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zunszain, P. A., Federico, C., Sechi, M., Al-Damluji, S. & Ganellin, C. R. Search for the pharmacophore in prazosin for transport-P. Bioorg. Med. Chem. 13, 3681–3689 (2005).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles