Understanding covalency in molecular f-block compounds from the synergy of spectroscopy and quantum chemistry

Winter, M. J. Chemical Bonding 2nd edn (Oxford Univ. Press, 2016).Aspinall, H. C. f-Block Chemistry (Oxford Univ. Press, 2020).Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).Article 
CAS 
PubMed 

Google Scholar 
Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).Article 
CAS 

Google Scholar 
Kaltsoyannis, N. Transuranic computational chemistry. Chem. Eur. J. 24, 2815–2825 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kerridge, A. Quantification of f-element covalency through analysis of the electron density: insights from simulation. Chem. Commun. 53, 6685–6695 (2017).Article 
CAS 

Google Scholar 
Su, J. et al. Energy-degeneracy-driven covalency in actinide bonding. J. Am. Chem. Soc. 140, 17977–17984 (2018).Article 
CAS 
PubMed 

Google Scholar 
Lu, E. et al. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Nat. Commun. 10, 634 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Taylor, R. J. (ed.) Reprocessing and Recycling of Spent Nuclear Fuel (Elsevier, 2015).Chandrasekar, A. & Ghanty, T. K. Uncovering heavy actinide covalency: implications for minor actinide partitioning. Inorg. Chem. 58, 3744–3753 (2019).Article 
CAS 
PubMed 

Google Scholar 
Oher, H. et al. Influence of the first coordination of uranyl on its luminescence properties: a study of uranyl binitrate with N,N-dialkyl amide DEHiBA and water. Inorg. Chem. 61, 890–901 (2022).Article 
CAS 
PubMed 

Google Scholar 
Tolu, D., Guillaumont, D. & de la Lande, A. Irradiation of plutonium tributyl phosphate complexes by ionizing alpha particles: a computational study. J. Phys. Chem. A 127, 7045–7057 (2023).Article 
CAS 
PubMed 

Google Scholar 
Fletcher, L. S. et al. Next-generation 3,3-alkoxyBTPs as complexants for minor actinide separation from lanthanides: a comprehensive separations, spectroscopic, and DFT study. Inorg. Chem. 63, 4819–4827 (2024).Article 
CAS 
PubMed 

Google Scholar 
Streit, M. & Ingold, F. Nitrides as a nuclear fuel option. J. Eur. Ceram. Soc. 25, 2687–2692 (2005).Article 
CAS 

Google Scholar 
King, D. M. et al. Isolation and characterization of a uranium(VI)-nitride triple bond. Nat. Chem. 5, 482–488 (2013).Article 
CAS 
PubMed 

Google Scholar 
Jones, S., Boxall, C., Maher, C. & Taylor, R. A review of the reprocessability of uranium nitride based fuels. Prog. Nucl. Energy 165, 104917 (2023).Article 
CAS 

Google Scholar 
Jensen, F. Introduction to Computational Chemistry 3rd edn (Wiley, 2016).Kaltsoyannis, N., Hay, P. J., Li, J., Blaudeau, J.-P. & Bursten, B. E. in The Chemistry of the Actinide and Transactinide Elements 3rd edn (eds Morss, L. R. et al.) 1893–2012 (Springer, 2006).Kaltsoyannis, N. & Kerridge, A. in The Chemical Bond: Fundamental Aspects of Chemical Bonding (eds Frenking, G. & Shaik, S.) 337–356 (Wiley-VCH, 2014).Hayton, T. W. & Kaltsoyannis, N. in Experimental and Theoretical Approaches to Actinide Chemistry (eds Gibson, J. K. & de Jong, W. A.) 181–236 (Wiley, 2018).Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).Article 

Google Scholar 
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).Article 

Google Scholar 
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).Article 
CAS 

Google Scholar 
Casida, M. E. in Recent Developments and Applications of Modern Density Functional Theory (ed. Seminario, J. M.) 391–439 (Elsevier, 1996).Čížek, J. On correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 45, 4256–4266 (1966).Article 

Google Scholar 
Löwdin, P. O. Quantum theory of many-particle systems. 1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955).Article 

Google Scholar 
Roos, B. O., Taylor, P. R. & Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density-matrix formulated super-CI approach. Chem. Phys. 48, 157–173 (1980).Article 
CAS 

Google Scholar 
Malmqvist, P. A., Rendell, A. & Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary-group approach. J. Phys. Chem. 94, 5477–5482 (1990).Article 
CAS 

Google Scholar 
de Groot, F. Multiplet effects in X-ray spectroscopy. Coord. Chem. Rev. 249, 31–63 (2005).Article 

Google Scholar 
Atanasov, M. et al. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev. 289, 177–214 (2015).Article 

Google Scholar 
Jung, J. L., Atanasov, M. & Neese, F. Ab initio ligand-field theory analysis and covalency trends in actinide and lanthanide free ions and octahedral complexes. Inorg. Chem. 56, 8802–8816 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ungur, L. & Chibotaru, L. F. Ab initio crystal field for lanthanides. Chem. Eur. J. 23, 3708–3718 (2017).Article 
CAS 
PubMed 

Google Scholar 
Autschbach, J. Orbitals: some fiction and some facts. J. Chem. Educ. 89, 1032–1040 (2012).Article 
CAS 

Google Scholar 
Glendening, E. D. & Weinhold, F. Natural resonance theory: II. Natural bond order and valency. J. Comput. Chem. 19, 610–627 (1998).Article 
CAS 

Google Scholar 
Weinhold, F. & Landis, C. R. Discovering Chemistry with Natural Bond Orbitals (Wiley, 2012).Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).Article 
CAS 

Google Scholar 
Wiberg, K. B. Application of Pople-Santry-Segal complete neglect of differential overlap method to some hydrocarbons and their cations. J. Am. Chem. Soc. 90, 59–63 (1968).Article 
CAS 

Google Scholar 
Mayer, I. Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).Article 
CAS 

Google Scholar 
Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon, 1990).Tassell, M. J. & Kaltsoyannis, N. Covalency in AnCp4 (An = Th–Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Dalton Trans. 39, 6719–6725 (2010).Article 
CAS 
PubMed 

Google Scholar 
Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).Article 
CAS 
PubMed 

Google Scholar 
Blanco, M. A., Pendás, A. M. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).Article 
CAS 
PubMed 

Google Scholar 
Cho, H., de Jong, W. A. & Soderquist, C. Z. Probing the oxygen environment in UO22+ by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations. J. Chem. Phys. 132, 084501 (2010).Article 
PubMed 

Google Scholar 
Martel, L. et al. High-resolution solid-state oxygen-17 NMR of actinide-bearing compounds: an insight into the 5f chemistry. Inorg. Chem. 53, 6928–6933 (2014).Article 
CAS 
PubMed 

Google Scholar 
Martel, L. et al. Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations. Inorg. Chem. 57, 15350–15360 (2018).Article 
CAS 
PubMed 

Google Scholar 
DeVore, M. A., Klug, C. A., Kriz, M. R., Roy, L. E. & Wellons, M. S. Investigations of uranyl fluoride sesquihydrate (UO2F2•1.57H2O): combining 19F solid-state MAS NMR spectroscopy and GIPAW chemical shift calculations. J. Phys. Chem. A 122, 6873–6878 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fernández-Alarcón, A. & Autschbach, J. Relativistic density functional NMR tensors analyzed with spin-free localized molecular orbitals. ChemPhysChem 24, e202200667 (2023).Article 
PubMed 

Google Scholar 
Hrobárik, P., Hrobáriková, V., Greif, A. H. & Kaupp, M. Giant spin–orbit effects on NMR shifts in diamagnetic actinide complexes: guiding the search of uranium(VI) hydride complexes in the correct spectral range. Angew. Chem. Int. Ed. 51, 10884–10888 (2012).Article 

Google Scholar 
Seaman, L. A. et al. A rare uranyl(VI)-alkyl ate complex [Li(DME)1.5]2[UO2(CH2SiMe3)4] and its comparison with a homoleptic uranium(VI)-hexaalkyl. Angew. Chem. Int. Ed. 52, 3259–3263 (2013).Article 
CAS 

Google Scholar 
Fortier, S., Walensky, J. R., Wu, G. & Hayton, T. W. High-valent uranium alkyls: evidence for the formation of UVI(CH2SiMe3)6. J. Am. Chem. Soc. 133, 11732–11743 (2011).Article 
CAS 
PubMed 

Google Scholar 
Panetti, G. B. et al. Isolation and characterization of a covalent CeIV-Aryl complex with an anomalous 13C chemical shift. Nat. Commun. 12, 1713 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in Th(En){N(SiMe3)2}3− (E = Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).Article 
CAS 
PubMed 

Google Scholar 
Ramsey, N. F. Magnetic shielding of nuclei in molecules. Phys. Rev. 78, 699–703 (1950).Article 
CAS 

Google Scholar 
Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Synthesis, thermochemistry, bonding, and 13C NMR chemical shift analysis of a phosphorano-stabilized carbene of thorium. Organometallics 36, 4519–4524 (2017).Article 
CAS 

Google Scholar 
Wu, W. et al. Molecular thorium compounds with dichalcogenide ligands: synthesis, structure, 77Se NMR study, and thermolysis. Inorg. Chem. 57, 14821–14833 (2018).Article 
CAS 
PubMed 

Google Scholar 
Mullane, K. C. et al. 13C NMR shifts as an indicator of U–C bond covalency in uranium(VI) acetylide complexes: an experimental and computational study. Inorg. Chem. 58, 4152–4163 (2019).Article 
CAS 
PubMed 

Google Scholar 
Staun, S. L., Sergentu, D. C., Wu, G., Autschbach, J. & Hayton, T. W. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem. Sci. 10, 6431–6436 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Sergentu, D. C. et al. Probing the electronic structure of a thorium nitride complex by solid-state 15N NMR spectroscopy. Inorg. Chem. 59, 10138–10145 (2020).Article 
CAS 
PubMed 

Google Scholar 
Du, J. Z. et al. Exceptional uranium(VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nat. Commun. 12, 5649 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Berryman, V. E. J. et al. Quantum chemical topology and natural bond orbital analysis of M–O covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np). Phys. Chem. Chem. Phys. 22, 16804–16812 (2020).Article 
CAS 
PubMed 

Google Scholar 
Réant, B. L. L. et al. 29Si NMR spectroscopy as a probe of s- and f-block metal(II)–silanide bond covalency. J. Am. Chem. Soc. 143, 9813–9824 (2021).Article 
PubMed 

Google Scholar 
Du, J. Z. et al. 31P nuclear magnetic resonance spectroscopy as a probe of thorium–phosphorus bond covalency: correlating phosphorus chemical shift to metal–phosphorus bond order. J. Am. Chem. Soc. 145, 21766–21784 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hedman, B., Hodgson, K. O. & Solomon, E. I. X-Ray absorption-edge spectroscopy of ligands bound to open-shell metal ions: chlorine K-edge studies of covalency in tetracholorocuprate(2−). J. Am. Chem. Soc. 112, 1643–1645 (1990).Article 
CAS 

Google Scholar 
Sergentu, D. C. & Autschbach, J. X-ray absorption spectra of f-element complexes: insight from relativistic multiconfigurational wavefunction theory. Dalton Trans. 51, 1754–1764 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kozimor, S. A. et al. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 131, 12125–12136 (2009).Article 
CAS 
PubMed 

Google Scholar 
Kozimor, S. A. et al. Covalency trends in group IV metallocene dichlorides. Chlorine K-edge X-ray absorption spectroscopy and time dependent-density functional theory. Inorg. Chem. 47, 5365–5371 (2008).Article 
CAS 
PubMed 

Google Scholar 
Minasian, S. G. et al. New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory. Chem. Sci. 5, 351–359 (2014).Article 
CAS 

Google Scholar 
Qiao, Y. S. et al. Enhanced 5f-δ bonding in [U(C7H7)2]−: C K-edge XAS, magnetism, and ab initio calculations. Chem. Commun. 57, 9562–9565 (2021).Article 
CAS 

Google Scholar 
Gourier, D., Caurant, D., Arliguie, T. & Ephritikhine, M. EPR and angle-selected ENDOR study of 5f–ligand interactions in the [U(η7-C7H7)2]− anion, an f1 analogue of uranocene. J. Am. Chem. Soc. 120, 6084–6092 (1998).Article 
CAS 

Google Scholar 
Dolg, M. et al. Formally tetravalent cerium and thorium compounds: a configuration interaction study of cerocene Ce(C8H8)2 and thorocene Th(C8H8)2 using energy-adjusted quasirelativistic ab initio pseudopotentials. Chem. Phys. 195, 71–82 (1995).Article 
CAS 

Google Scholar 
Booth, C. H., Walter, M. D., Daniel, M., Lukens, W. W. & Andersen, R. A. Self-contained Kondo effect in single molecules. Phys. Rev. Lett. 95, 267202 (2005).Article 
CAS 
PubMed 

Google Scholar 
Kerridge, A., Coates, R. & Kaltsoyannis, N. Is cerocene really a Ce(III) compound? All-electron spin–orbit coupled CASPT2 calculations on M(η8-C8H8)2 (M = Th, Pa, Ce). J. Phys. Chem. A 113, 2896–2905 (2009).Article 
CAS 
PubMed 

Google Scholar 
Moossen, O. & Dolg, M. Two interpretations of the cerocene electronic ground state. Chem. Phys. Lett. 594, 47–50 (2014).Article 
CAS 

Google Scholar 
Smiles, D. E. et al. The duality of electron localization and covalency in lanthanide and actinide metallocenes. Chem. Sci. 11, 2796–2809 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Sergentu, D. C., Booth, C. H. & Autschbach, J. Probing multiconfigurational states by spectroscopy: the cerium XAS L3-edge puzzle. Chem. Eur. J. 27, 7239–7251 (2021).Article 
CAS 
PubMed 

Google Scholar 
Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew. Chem. Int. Ed. 47, 1488–1491, (2008).Article 
CAS 

Google Scholar 
MacDonald, M. R., Ziller, J. W. & Evans, W. J. Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J. Am. Chem. Soc. 133, 15914–15917 (2011).Article 
CAS 
PubMed 

Google Scholar 
MacDonald, M. R. et al. Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II). J. Am. Chem. Soc. 134, 8420–8423 (2012).Article 
CAS 
PubMed 

Google Scholar 
Ryan, A. J. et al. Synthesis, structure, and magnetism of tris(amide) [Ln{N(SiMe3)2}3]1− complexes of the non-traditional +2 lanthanide ions. Chem. Eur. J. 24, 7702–7709 (2018).Article 
CAS 
PubMed 

Google Scholar 
Fieser, M. E. et al. Evaluating the electronic structure of formal LnII ions in LnII(C5H4SiMe3)31− using XANES spectroscopy and DFT calculations. Chem. Sci. 8, 6076–6091 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Denning, R. G. et al. Covalency in the uranyl ion: a polarized X-ray spectroscopic study. J. Chem. Phys. 117, 8008–8020 (2002).Article 
CAS 

Google Scholar 
Stanistreet-Welsh, K. & Kerridge, A. Bounding [AnO2]2+ (An = U, Np) covalency by simulated O K-edge and An M-edge X-ray absorption near-edge spectroscopy. Phys. Chem. Chem. Phys. 25, 23753–23760 (2023).Article 
CAS 
PubMed 

Google Scholar 
Misael, W. A. & Gomes, A. S. P. Core excitations of uranyl in Cs2UO2Cl4 from relativistic embedded damped response time-dependent density functional theory calculations. Inorg. Chem. 62, 11589–11601 (2023).Article 
CAS 
PubMed 

Google Scholar 
Spencer, L. P. et al. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy. J. Am. Chem. Soc. 135, 2279–2290 (2013).Article 
CAS 
PubMed 

Google Scholar 
Minasian, S. G. et al. Determining relative f and d orbital contributions to M–Cl covalency in MCl62− (M = Ti, Zr, Hf, U) and UOCl5− using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 134, 5586−5597 (2012).Article 
PubMed 

Google Scholar 
Kramers, H. A. & Heisenberg, W. On the dispersal of radiation by atoms. Z. Phys. 31, 681–708 (1925).Article 
CAS 

Google Scholar 
Caciuffo, R. & Lander, G. H. X-ray synchrotron radiation studies of actinide materials. J. Synchrotron Radiat. 28, 1692–1708 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Polly, R., Schacherl, B., Rothe, J. & Vitova, T. Relativistic multiconfigurational ab initio calculation of uranyl 3d4f resonant inelastic X-ray scattering. Inorg. Chem. 60, 18764–18776 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vitova, T. et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 8, 16053 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ehrman, J. N. et al. Unveiling hidden shake-up features in the uranyl M4-edge spectrum. JACS Au 4, 1134–1141 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sergentu, D. C. & Autschbach, J. Covalency in actinide(IV) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem. Sci. 13, 3194–3207 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cross, J. N. et al. Covalency in americium(III) hexachloride. J. Am. Chem. Soc. 139, 8667–8677 (2017).Article 
CAS 
PubMed 

Google Scholar 
Diamond, R. M., Street, K. & Seaborg, G. T. An ion-exchange study of possible hybridized 5f bonding in the actinides. J. Am. Chem. Soc. 76, 1461–1469 (1954).Article 
CAS 

Google Scholar 
Löble, M. W. et al. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6x− (x =3, 2). J. Am. Chem. Soc. 137, 2506–2523 (2015).Article 
PubMed 

Google Scholar 
Palumbo, C. T., Zivkovic, I., Scopelliti, R. & Mazzanti, M. Molecular complex of Tb in the +4 oxidation state. J. Am. Chem. Soc. 141, 9827–9831 (2019).Article 
CAS 
PubMed 

Google Scholar 
Rice, N. T. et al. Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J. Am. Chem. Soc. 141, 13222–13233 (2019).Article 
CAS 
PubMed 

Google Scholar 
Willauer, A. R. et al. Accessing the +IV oxidation state in molecular complexes of praseodymium. J. Am. Chem. Soc. 142, 5538–5542 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ramanathan, A. et al. Chemical design of electronic and magnetic energy scales of tetravalent praseodymium materials. Nat. Commun. 14, 3134 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Minasian, S. G. et al. Quantitative evidence for lanthanide-oxygen orbital mixing in CeO2, PrO2, and TbO2. J. Am. Chem. Soc. 139, 18052–18064 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kvashnina, K. O., Butorin, S. M., Martin, P. & Glatzel, P. Chemical state of complex uranium oxides. Phys. Rev. Lett. 111, 253002 (2013).Article 
CAS 
PubMed 

Google Scholar 
Kvashnina, K. O., Kvashnin, Y. O. & Butorin, S. M. Role of resonant inelastic X-ray scattering in high-resolution core-level spectroscopy of actinide materials. J. Electron Spectros. Relat. Phenomena 194, 27–36 (2014).Article 
CAS 

Google Scholar 
Amidani, L. et al. Probing the local coordination of hexavalent uranium and the splitting of 5f orbitals induced by chemical bonding. Inorg. Chem. 60, 16286–16293 (2021).Article 
CAS 
PubMed 

Google Scholar 
Minasian, S. G., Krinsky, J. L. & Arnold, J. Evaluating f-element bonding from structure and thermodynamics. Chem. Eur. J. 17, 12234–12245 (2011).Article 
CAS 
PubMed 

Google Scholar 
Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).Article 
CAS 
PubMed 

Google Scholar 
Formanuik, A. et al. Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy. Nat. Chem. 9, 578–583 (2017).Article 
CAS 
PubMed 

Google Scholar 
Schweiger, A. & Jeschke, J. Principles of Pulsed Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).Nodaraki, L. E. et al. Metal–carbon bonding in early lanthanide substituted cyclopentadienyl complexes probed by pulsed EPR spectroscopy. Chem. Sci. 15, 3003–3010 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lukens, W. W. et al. The roles of 4f- and 5f-orbitals in bonding: a magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study. Dalton Trans. 45, 11508–11521 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wolford, N. J., Radovic, A. & Neidig, M. L. C-Term magnetic circular dichroism (MCD) spectroscopy in paramagnetic transition metal and f-element organometallic chemistry. Dalton Trans. 50, 416–428 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wolford, N. J., Yu, X. J., Bart, S. C., Autschbach, J. & Neidig, M. L. Ligand effects on electronic structure and bonding in U(III) coordination complexes: a combined MCD, EPR and computational study. Dalton Trans. 49, 14401–14410 (2020).Article 
CAS 
PubMed 

Google Scholar 
Gendron, F. et al. Magnetic circular dichroism of UCl6− in the ligand-to-metal charge-transfer spectral region. Phys. Chem. Chem. Phys. 19, 17300–17313 (2017).Article 
CAS 
PubMed 

Google Scholar 
Notter, F. P. & Bolvin, H. Optical and magnetic properties of the 5f1 AnX6q− series: a theoretical study. J. Chem. Phys. 130, 184310 (2009).Article 
PubMed 

Google Scholar 
Fleischauer, V. E. et al. Insight into the electronic structure of formal lanthanide(II) complexes using magnetic circular dichroism spectroscopy. Organometallics 38, 3124–3131 (2019).Article 
CAS 

Google Scholar 
MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 135, 9857–9868, (2013).Article 
CAS 
PubMed 

Google Scholar 
Aquino, F., Pritchard, B. & Autschbach, J. Scalar relativistic computations and localized orbital analyses of nuclear hyperfine coupling and paramagnetic NMR chemical shifts. J. Chem. Theory Comput. 8, 598–609 (2012).Article 
CAS 
PubMed 

Google Scholar 
Autschbach, J. in Annual Reports in Computational Chemistry Vol. 11 (ed. Dixon, D. A.) 3–36 (Elsevier, 2015).Gendron, F. & Autschbach, J. Ligand NMR chemical shift calculations for paramagnetic metal complexes: 5f1 vs 5f2 actinides. J. Chem. Theory Comput. 12, 5309–5321 (2016).Article 
CAS 
PubMed 

Google Scholar 
Bolvin, H. in Computational Modelling of Molecular Nanomagnets (ed. Rajaraman, G.) 179–218 (Springer, 2023).Ashuiev, A. et al. Geometry and electronic structure of Yb(III)[CH(SiMe3)2]3 from EPR and solid-state NMR augmented by computations. Phys. Chem. Chem. Phys. 26, 8734–8747 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hermann, J. et al. Ab initio quantum chemistry with neural-network wavefunctions. Nat. Rev. Chem. 7, 692–709 (2023).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles