Phosphoric acid salts of amino acids as a source of oligopeptides on the early Earth

Vilčiauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J. & Kreuer, K.-D. The mechanism of proton conduction in phosphoric acid. Nat. Chem. 4, 461–466 (2012).Article 
PubMed 

Google Scholar 
Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).Article 
CAS 
PubMed 

Google Scholar 
Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).Article 
CAS 
PubMed 

Google Scholar 
Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).Article 
CAS 
PubMed 

Google Scholar 
Rode, B. M. & Schwendinger, M. G. Copper-catalyzed amino acid condensation in water—A simple possible way of prebiotic peptide formation. Orig. Life Evol. Biosph. 20, 401–410 (1990).Article 
CAS 

Google Scholar 
Griffith, E. C. & Vaida, V. In situ observation of peptide bond formation at the water-air interface. Proc. Natl. Acad. Sci. USA 109, 15697–15701 (2012).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Eder, A. H. & Rode, B. M. Influence of alkali- and alkaline-earth-metal cations on the ‘salt-induced peptide formation’ reaction. J. Chem. Soc. Dalton Trans. 1125–1130 (1994).Sauer, F. et al. From amino acid mixtures to peptides in liquid sulphur dioxide on early Earth. Nat. Comm. 12, 7182 (2021).Article 
CAS 

Google Scholar 
Sydow, C., Sauer, F., Siegle, A. F. & Trapp, O. Iron-mediated peptide formation in water and liquid sulfur dioxide under prebiotically plausible conditions. ChemSystemsChem. 5, e202200034 (2023).Article 
CAS 

Google Scholar 
Martra, G. et al. The formation and self-assembly of long prebiotic oligomers produced by the condensation of unactivated amino acids on oxide surfaces. Angew. Chem. Int. Ed. 53, 4671–4674 (2014).Article 
CAS 

Google Scholar 
Rimola, A., Fabbiani, M., Sodupe, M., Ugliengo, P. & Martra, G. How does silica catalyze the amide bond formation under dry conditions? Role of specific surface silanol pairs. ACS Catal. 8, 4558–4568 (2018).Article 
CAS 

Google Scholar 
Sakhno, Y. et al. One step up the ladder of prebiotic complexity: formation of nonrandom linear polypeptides from binary systems of amino acids on silica. Chem. Eur. J. 25, 1275–1285 (2019).Article 
CAS 
PubMed 

Google Scholar 
Kitadai, N. et al. Glycine polymerization on oxide minerals. Orig. Life Evol. Biosph. 47, 123–143 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bujdák, J. & Rode, B. M. Activated alumina as an energy source for peptide bond formation: consequences for mineral-mediated prebiotic processes. Amino Acids 21, 281–291 (2001).Article 
PubMed 

Google Scholar 
Georgelin, T. et al. Iron(III) oxide nanoparticles as catalysts for the formation of linear glycine peptides. Eur. J. Inorg. Chem. 2017, 198–211 (2017).Article 
CAS 

Google Scholar 
Rodriguez-Garcia, M. et al. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 6, 8385 (2015).Article 
CAS 
PubMed 

Google Scholar 
Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic. Earth. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).Article 
CAS 

Google Scholar 
Yu, S.-S. et al. Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Phys. Chem. Chem. Phys. 18, 28441–28450 (2016).Article 
CAS 
PubMed 

Google Scholar 
Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA 116, 16338–16346 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Frenkel-Pinter, M. et al. Differential oligomerization of alpha versus beta amino acids and hydroxy acids in abiotic proto-peptide synthesis reactions. Life 12, 265 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abou Mrad, N. et al. The prebiotic C-terminal elongation of peptides can be initiated by N-carbamoyl amino acids. Chem. Eur. J. 23, 7418–7421 (2017).Article 
CAS 
PubMed 

Google Scholar 
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).Article 
CAS 
PubMed 

Google Scholar 
Ward, D. J., Saccomando, D. J., Walker, G. & Mansell, S. M. Sustainable routes to alkenes: applications of homogeneous catalysis to the dehydration of alcohols to alkenes. Catal. Sci. Technol. 13, 2638–2647 (2023).Article 
CAS 

Google Scholar 
Fox, S. W. & Harada, K. Thermal copolymerization of amino acids in the presence of phosphoric acid. Arch. Biochem. Biophys. 86, 281–285 (1960).Article 
CAS 
PubMed 

Google Scholar 
Harada, K. & Fox, S. W. The thermal condensation of glutamic acid and glycine to linear peptides. 1. J. Am. Chem. Soc. 80, 2694–2697 (1958).Article 
CAS 

Google Scholar 
Choughuley, A. S. U., Subbaraman, A. S., Kazi, Z. A. & Chadha, M. S. Peptide formation in the presence of simple inorganic phosphates. Biosystems 5, 48–53 (1972).Article 
CAS 

Google Scholar 
Rabinowitz, J., Flores, J., Krebsbach, R. & Rogers, G. Peptide formation in the presence of linear or cyclic polyphosphates. Nature 224, 795–796 (1969).Article 
CAS 
PubMed 

Google Scholar 
Yamanaka, J., Inomata, K. & Yamagata, Y. Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions. Orig. Life Evol. Biosph. 18, 165–178 (1988).Article 
CAS 
PubMed 

Google Scholar 
Boigenzahn, H. & Yin, J. Glycine to oligoglycine via sequential trimetaphosphate activation steps in drying environments. Orig. Life Evol. Biosph. 52, 249–261 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).Article 
CAS 
PubMed 

Google Scholar 
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The cambridge structural database. Acta Crystallogr. B 72, 171–179 (2016).Article 
CAS 

Google Scholar 
Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. Structures of glycine monophosphate and glycine cyclo-triphosphate. Acta Cryst. C 44, 99–102 (1988).Article 

Google Scholar 
Fox, S. W. & Harada, K. Thermal copolymerization of amino acids to a product resembling protein. Science 128, 1214–1214 (1958).Article 
CAS 
PubMed 

Google Scholar 
Campbell, T. D., Febrian, R., Kleinschmidt, H. E., Smith, K. A. & Bracher, P. J. Quantitative analysis of glycine oligomerization by ion-pair chromatography. ACS Omega 4, 12745–12752 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Natarajan, S., Muthukrishnan, C., Bahadur, S. A., Rajaram, R. K. & Rajan, S. S. Reinvestigation of the crystal structure of diglycine hydrochloride. Z. Kristallogr. Cryst. Mater. 198, 265–270 (1992).Article 
CAS 

Google Scholar 
Wong, M. L., Charnay, B. D., Gao, P., Yung, Y. L. & Russell, M. J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17, 975–983 (2017).Article 
CAS 
PubMed 

Google Scholar 
Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Kovács, J., Könyves, I. & Pusztai, A. Preparation of polyasparaginic acid (polyaspartic acid) by the thermal autocondensation of asparaginic acid. Experientia 9, 459–460 (1953).Article 
PubMed 

Google Scholar 
Wang, Y., Hou, Y., Ruan, G., Pan, M. & Liu, T. Study on the polymerization of aspartic acid catalyzed by phosphoric acid. J. Macromol. Sci. A 40, 293–307 (2003).Article 

Google Scholar 
Pasek, M. A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA 105, 853–858 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110, 10089–10094 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Averbuch-Pouchot, M.-T. Structures of glycinium phosphite and glycylglycinium phosphite. Acta Crystallogr. C 49, 815–818 (1993).Article 

Google Scholar 
Martínez-Bachs, B. & Rimola, A. Prebiotic peptide bond formation through amino acid phosphorylation. insights from quantum chemical simulations. Life 9, 75 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Li, Y.-M., Yin, Y.-W. & Zhao, Y.-F. Phosphoryl group participation leads to peptide formation from N-phosphorylamino acids. Int. J. Pept. Protein Res. 39, 375–381 (1992).Article 
CAS 
PubMed 

Google Scholar 
Zeng, J.-N., Xue, C.-B., Chen, Q.-W. & Zhao, Y.-F. A new peptide coupling reagent—Dialkyl phosphite. Bioorg. Chem. 17, 434–442 (1989).Article 
CAS 

Google Scholar 
Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 71, 1721–1736 (2007).Article 
CAS 

Google Scholar 
Gull, M. et al. Nucleoside phosphorylation by the mineral schreibersite. Sci. Rep. 5, 17198 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wunnava, S. et al. Acid-catalyzed RNA-oligomerization from 3’,5’-cGMP. Chem. Eur. J. 27, 17581–17585 (2021).Article 
CAS 
PubMed 

Google Scholar 
Makarov, M. et al. Early selection of the amino acid alphabet was adaptively shaped by biophysical constraints of foldability. J. Am. Chem. Soc. 145, 5320–5329 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. Structure of L-histidinium dihydrogenmonophosphate monohydrate. Acta Crystallogr. C 44, 890–892 (1988).Article 

Google Scholar 
Monaco, S. B. et al. Synthesis and characterization of chemical analogs of L-arginine phosphate. J. Cryst. Growth 85, 252–255 (1987).Article 
CAS 

Google Scholar 
Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. The HighScore suite. Powder Diffr. 29, S13–S18 (2014).Article 
CAS 

Google Scholar 
Espinosa, E. et al. Electron density study of a new non-linear optical material: L-arginine phosphate monohydrate (LAP). Comparison between X-X and X-(X + N) refinements. Acta Crystallogr. B 52, 519–534 (1996).Article 

Google Scholar 
Ahmed, A. B. et al. Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid. J. Mol. Struct. 920, 1–7 (2009).Article 

Google Scholar 
Barrett, W. T. & Wallace, W. E. Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, densities, Schottky defects and mutual solubilities. J. Am. Chem. Soc. 76, 366–369 (1954).Article 
CAS 

Google Scholar 
Cherouana, A., Benali-Cherif, N., Bendjeddou, L. & Merazig, H. Diglycinium sulfate. Acta Crystallogr. E 58, o1351–o1353 (2002).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles