HPC-T-Annotator: an HPC tool for de novo transcriptome assembly annotation | BMC Bioinformatics

Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet. 2020;21(10):630–44. https://doi.org/10.1038/s41576-020-0258-4.Article 
CAS 
PubMed 

Google Scholar 
Nachtigall PG, Kashiwabara AY, Durham AM. CodAn: predictive models for precise identification of coding regions in eukaryotic transcripts. Brief Bioinform. 2021;22(3):bbaa045. https://doi.org/10.1093/bib/bbaa045.Article 
CAS 
PubMed 

Google Scholar 
Muers M. Transcriptome to proteome and back to genome. Nat Rev Genet. 2011;12(8):518–518. https://doi.org/10.1038/nrg3037.Article 
CAS 
PubMed 

Google Scholar 
Joudaki F, Ismaili A, Sohrabi SS, Hosseini SZ, Kahrizi D, Ahmadi H. Transcriptome analysis of gall oak (Quercus infectoria): De novo assembly, functional annotation and metabolic pathways analysis. Genomics. 2023;115(2):110588. https://doi.org/10.1016/j.ygeno.2023.110588.Article 
CAS 
PubMed 

Google Scholar 
Raghavan V, Kraft L, Mesny F, Rigerte L. A simple guide to de novo transcriptome assembly and annotation. Brief Bioinform. 2022;23(2):bbab563. https://doi.org/10.1093/bib/bbab563.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fallon TR, Čalounová T, Mokrejš M, Weng J-K, Pluskal T. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation. BMC Bioinform. 2023;24(1):133. https://doi.org/10.1186/s12859-023-05254-8.Article 

Google Scholar 
Jackson DJ, Cerveau N, Posnien N. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms—a brief guide. Front Zool. 2024;21(1):17. https://doi.org/10.1186/s12983-024-00538-y.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu B, Luo X, Gao Z, Hu X, Weng Q. De novo transcriptome assembly and development of EST-SSR markers of the endangered Dendrebium nobile (Orchidaceae). Pak J Bot. 2022;54(2):483–9. https://doi.org/10.30848/PJB2022-2(40).Article 
CAS 

Google Scholar 
Sato M, Seki M, Suzuki Y, Ueki S. The dataset of de novo assembly and inferred functional annotation of the transcriptome of Heterosigma akashiwo, a bloom-forming, cosmopolitan raphidophyte. Data Brief. 2023. https://doi.org/10.1016/j.dib.2023.109071.Article 
PubMed 
PubMed Central 

Google Scholar 
Ivanov M, Sandelin A, Marquardt S. Trancriptome ReconstructoR: data-driven annotation of complex transcriptomes. BMC Bioinform. 2021;22(1):1–15. https://doi.org/10.1186/s12859-021-04208-2.Article 
CAS 

Google Scholar 
Alvarez RV, Mariño-Ramírez L, Landsman D. cTranscriptome annotation in the cloud: complexity, best practices, and cost. GigaScience. 2021;10(2):giaa163. https://doi.org/10.1093/gigascience/giaa163.Article 
PubMed 
PubMed Central 

Google Scholar 
Harshan P, Sandhya S, Gopalakrishnan A. De novo transcriptome for Chiloscyllium griseum, a long-tail carpet shark of the Indian waters. Sci Data. 2024;11:285. https://doi.org/10.1038/s41597-024-03093-7.Article 
PubMed 
PubMed Central 

Google Scholar 
Palomba M, Libro P, Martino JD, Rughetti A, Santoro M, Mattiucci S, Castrignanò T. De novo transcriptome assembly and annotation of the third stage larvae of the zoonotic parasite anisakis pegreffii. BMC Res Notes. 2022;15(1):223. https://doi.org/10.1186/s13104-022-06099-9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Palomba M, Libro P, Martino JD, Roca-Geronès X, Macali A, Castrignanò T, Canestrelli D, Mattiucci S. De novo transcriptome assembly of an antarctic nematode for the study of thermal adaptation in marine parasites. Sci Data. 2023;10(1):720. https://doi.org/10.1038/s41597-023-02591-4.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Levy-Booth DJ, Hashimi A, Roccor R, Liu LY, Renneckar S, Eltis LD, Mohn WW. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2021;15(3):879–93. https://doi.org/10.1038/s41396-020-00820-x.Article 
CAS 
PubMed 

Google Scholar 
Chiocchio A, Libro P, Martino G, Bisconti R, Castrignanò T, Canestrelli D. Brain de novo transcriptome assembly of a toad species showing polymorphic anti-predatory behavior. Nat Sci Data. 2022;9(1):619. https://doi.org/10.1038/s41597-022-01724-5.Article 
CAS 

Google Scholar 
Libro P, Chiocchio A, Rysky ED, Martino JD, Bisconti R, Castrignanò T, Canestrelli D. De novo transcriptome assembly and annotation for gene discovery in Salamandra salamandra at the larval stage. Sci Data. 2023;10(1):330. https://doi.org/10.1038/s41597-023-02217-9.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Libro P, Bisconti R, Chiocchio A, Spadavecchia G, Castrignanò T, Canestrelli D. First brain de novo transcriptome of the Tyrrhenian tree frog, Hyla sarda, for the study of dispersal behavior. Front Ecol Evol. 2022. https://doi.org/10.3389/fevo.2022.947186.Article 

Google Scholar 
Mastrantonio V, Libro P, Martino JD, Matera M, Bellini R, Castrignanò T, Urbanelli S, Porretta D. Integrated de novo transcriptome of Culex pipiens mosquito larvae as a resource for genetic control strategies. Sci Data. 2024;11:471. https://doi.org/10.1038/s41597-024-03285-1.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. https://doi.org/10.1038/nprot.2013.084.Article 
CAS 
PubMed 

Google Scholar 
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-seq data. GigaScience. 2019;8(9):giz100. https://doi.org/10.1093/gigascience/giz100.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo rna-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92. https://doi.org/10.1093/bioinformatics/bts094.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hart AJ, Ginzburg S, Xu M, Fisher CR, Rahmatpour N, Mitton JB, Paul R, Wegrzyn JL. Entap: bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol Ecol Resour. 2020;20(2):591–604. https://doi.org/10.1111/1755-0998.13106.Article 
CAS 
PubMed 

Google Scholar 
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:61–5. https://doi.org/10.1093/nar/gkl842.Article 

Google Scholar 
Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Roechert B, Bairoch A. Protein variety and functional diversity: Swiss-prot annotation in its biological context. Comptes Rendus Biol. 2005;328(10–11):882–99. https://doi.org/10.1016/j.crvi.2005.06.001.Article 
CAS 

Google Scholar 
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000;28(1):45–8. https://doi.org/10.1093/nar/28.1.45.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/s0022-2836(05)80360-2.Article 
CAS 
PubMed 

Google Scholar 
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59–60. https://doi.org/10.1038/nmeth.3176.Article 
CAS 
PubMed 

Google Scholar 
Castrignanò T, Gioiosa S, Flati T, Cestari M, Picardi E, Chiara M, Fratelli M, Amente S, Cirilli M, Tangaro MA, Chillemi G, Pesole G, Zambelli F. ELIXIR-IT HPC@CINECA: high performance computing resources for the bioinformatics community. BMC Bioinform. 2020. https://doi.org/10.1186/s12859-020-03565-8.Article 

Google Scholar 
Yeh C-W, Huang C-W, Yang C-L, Wang Y-T. A high performance computing platform for big biological data analysis. 2023:68–70. https://doi.org/10.1109/ICASI57738.2023.10179527.Chiara M, Gioiosa S, Chillemi G, D’Antonio M, Flati T, Picardi E, Zambelli F, Horner DS, Pesole G, Castrignanò T. CoVaCS: a consensus variant calling system. BMC Genom. 2018. https://doi.org/10.1186/s12864-018-4508-1.Article 

Google Scholar 
Bolis M, Garattini E, Paroni G, Zanetti A, Kurosaki M, Castrignanò T, Garattini SK, Biancardi F, Barzago MM, Gianni’ M, Terao M, Pattini L, Fratelli M. Network-guided modeling allows tumor-type independent prediction of sensitivity to all-trans-retinoic acid. Ann Oncol. 2017;28(3):611–21. https://doi.org/10.1093/annonc/mdw660.Article 
CAS 
PubMed 

Google Scholar 
Chetruengchai W, Jirapatrasilp P, Srichomthong C, Assawapitaksakul A, Pholyotha A, Tongkerd P, Shotelersuk V, Panha S. De novo genome assembly and transcriptome sequencing in foot and mantle tissues of Megaustenia siamensis reveals components of adhesive substances. Sci Rep. 2024;14(1):13756. https://doi.org/10.1038/s41598-024-64425-6.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Pinna V, Di Martino J, Liberati F, Bottoni P, Castrignanò T. IGUANER-differential gene expression and functional analyzer. In: BDA 2023. LNCS, vol. 14516, pp. 78–93. Springer, Berlin. 2024. https://doi.org/10.1007/978-3-031-58502-9_5.Picardi E, D’Antonio M, Carrabino D, Castrignanò T, Pesole G. ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments. Bioinformatics. 2011;27(9):1311–2. https://doi.org/10.1093/bioinformatics/btr117.Article 
CAS 
PubMed 

Google Scholar 
Tremblay J, Schreiber L, Greer CW. High-resolution shotgun metagenomics: the more data, the better? Brief Bioinform. 2022;23(6):443. https://doi.org/10.1093/bib/bbac443.Article 
CAS 

Google Scholar 
Cervi GH, Flores CD, Thompson CE. Metagenomic analysis: a pathway toward efficiency using high-performance computing. In: ICICT 2021. Lecture notes in networks and systems, vol. 236, pp. 555–565. Springer, Singapore; 2022. https://doi.org/10.1007/978-981-16-2380-6_49.Martino JD, Castrignano T, Arcieri M, Madeddu F, Pieroni M, Carotenuto G, Bottoni P, Botta L, Gabellone S, Saladino R. Molecular dynamics investigations of human DNA-topoisomerase I interacting with novel dewar valence photo-adducts: insights into inhibitory activity. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms25010234.Article 
PubMed 
PubMed Central 

Google Scholar 
Castrignanò T, Meo PDD, Carrabino D, Orsini M, Floris M, Tramontano A. The MEPS server for identifying protein conformational epitopes. BMC Bioinform. 2007;8(S1):1–5. https://doi.org/10.1186/1471-2105-8-s1-s6.Article 

Google Scholar 
Castrignanò T, Chillemi G, Varani G, Desideri A. Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration. Biophys J. 2002;83(6):3542–52. https://doi.org/10.1016/S0006-3495(02)75354-X.Article 
PubMed 
PubMed Central 

Google Scholar 
Castrignanò T, Chillemi G, Desideri A. Structure and hydration of BamHI DNA recognition site: a molecular dynamics investigation. Biophys J. 2000;79(3):1263–72. https://doi.org/10.1016/S0006-3495(00)76380-6.Article 
PubMed 
PubMed Central 

Google Scholar 
Pieroni M, Madeddu F, Di Martino J, Arcieri M, Parisi V, Bottoni P, Castrignanò T. MD-ligand-receptor: a high-performance computing tool for characterizing ligand-receptor binding interactions in molecular dynamics trajectories. Int J Mol Sci. 2023;24(14):11671. https://doi.org/10.3390/ijms241411671.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate protein sequence alignment. Bioinformatics. 2011;27(2):182–8. https://doi.org/10.1093/bioinformatics/btq644.Article 
CAS 
PubMed 

Google Scholar 
Zhang J, Wang H, Feng W-C. CuBLASTP: fine-grained parallelization of protein sequence search on CPU+GPU. IEEE/ACM Trans Comput Biol Bioinf. 2017;14(4):830–43. https://doi.org/10.1109/TCBB.2015.2489662.Article 
CAS 

Google Scholar 
Mikailov M, Luo F-J, Barkley S, Valleru L, Whitney S, Liu Z, Thakkar S, Tong W, Petrick N. Scaling bioinformatics applications on HPC. BMC Bioinform. 2017. https://doi.org/10.1186/s12859-017-1902-7.Article 

Google Scholar 
Yim WC, Cushman JC. Divide and conquer (DC) BLAST: fast and easy BLAST execution within HPC environments. PeerJ. 2017. https://doi.org/10.7717/peerj.3486.Article 
PubMed 
PubMed Central 

Google Scholar 
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8. https://doi.org/10.1038/s41592-021-01101-x.Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mai H, Zhang Y, Li D, Leung HC-M, Luo R, Wong C-K, Ting H-F, Lam T-W. AC-DIAMOND v1: accelerating large-scale DNA-protein alignment. Bioinformatics. 2018;34(21):3744–6. https://doi.org/10.1093/bioinformatics/bty391.Article 
CAS 
PubMed 

Google Scholar 
Yu J, Blom J, Sczyrba A, Goesmann A. Rapid protein alignment in the cloud: HAMOND combines fast DIAMOND alignments with Hadoop parallelism. J Biotechnol. 2017;257:58–60. https://doi.org/10.1016/j.jbiotec.2017.02.020.Article 
CAS 
PubMed 

Google Scholar 
Du Z, Wu Q, Wang T, Chen D, Huang X, Yang W, Luo W. BlastGUI: a python-based cross-platform local BLAST visualization software. Mol Inf. 2019. https://doi.org/10.1002/minf.201900120.Article 

Google Scholar 

Hot Topics

Related Articles