Interplay of kernel shape and surface structure for NIR luminescence in atomically precise gold nanorods

Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).Article 
CAS 

Google Scholar 
Huang, J. & Pu, K. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem. Sci. 12, 3379–3392 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, J. & Pu, K. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed. 59, 11717–11731 (2020).Article 
CAS 

Google Scholar 
Altinoğlu, E. I. & Adair, J. H. Near infrared imaging with nanoparticles. WIREs Nanomed. Nanobiotechnol. 2, 461–477 (2010).Article 

Google Scholar 
Xu, J. & Shang, L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin. Chem. Lett. 29, 1436–1444 (2018).Article 
CAS 

Google Scholar 
Gan, Z. et al. Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel. Angew. Chem. Int. Ed. 55, 11567–11571 (2016).Article 
CAS 

Google Scholar 
Chen, J. et al. Atomically precise photothermal nanomachines. Nat. Mater. 23, 271–280 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Ma, H. et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci. Adv. 9, eadh7828 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ma, H., Wang, J. & Zhang, X.-D. Near-infrared II emissive metal clusters: from atom physics to biomedicine. Coord. Chem. Rev. 448, 214184 (2021).Article 
CAS 

Google Scholar 
Goswami, N., Zheng, K. & Xie, J. Bio-NCs – the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 6, 13328–13347, (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Li, D. et al. Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. Small 16, e2003851 (2020).Article 
PubMed 

Google Scholar 
Yang, Y. et al. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano 14, 13536–13547 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zheng, K., Setyawati, M. I., Leong, D. T. & Xie, J. Antimicrobial gold nanoclusters. ACS Nano 11, 6904–6910 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48, 2422–2457 (2019).Article 
CAS 
PubMed 

Google Scholar 
Lei, Z., Pei, X.-L., Jiang, Z.-G. & Wang, Q.-M. Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) clusters. Angew. Chem., Int. Ed. 53, 12771–12775 (2014).Article 
CAS 

Google Scholar 
Lei, Z., Zhang, J.-Y., Guan, Z.-J. & Wang, Q.-M. Intensely luminescent gold(I) phosphinopyridyl clusters: visualization of unsupported aurophilic interactions in solution. Chem. Commun. 53, 10902–10905 (2017).Article 
CAS 

Google Scholar 
Yu, Y. et al. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136, 1246–1249 (2014).Article 
CAS 
PubMed 

Google Scholar 
Han, X.-S. et al. Structure determination of alkynyl-protected gold nanocluster Au22(tBuC≡C)18 and its thermochromic luminescence. Angew. Chem., Int. Ed. 59, 2309–2312 (2020).Article 
CAS 

Google Scholar 
Ito, S., Takano, S. & Tsukuda, T. Alkynyl-protected Au22(C≡CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence. J. Phys. Chem. Lett. 10, 6892–6896 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, Q. et al. Photoluminescence in rod-shaped icosahedral gold nanoclusters. Small 17, 2007992 (2021).Article 
CAS 

Google Scholar 
Li, Q., Zeman, C. J., Schatz, G. C. & Gu, X. W. Source of bright near-infrared luminescence in gold nanoclusters. ACS Nano 15, 16095–16105 (2021).Article 
CAS 
PubMed 

Google Scholar 
Takano, S. et al. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): efficient room-temperature phosphorescence from Ru@Au12. J. Am. Chem. Soc. 143, 10560–10564 (2021).Article 
CAS 
PubMed 

Google Scholar 
Wan, X.-K. et al. A near-infrared-emissive alkynyl-protected Au24 nanocluster. Angew. Chem. Int. Ed. 54, 9683–9686 (2015).Article 
CAS 

Google Scholar 
Zhu, C. et al. Fluorescence or phosphorescence? The metallic composition of the nanocluster kernel does matter. Angew. Chem. Int. Ed. 61, e202205947 (2022).Article 
ADS 
CAS 

Google Scholar 
Wang, X. et al. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 381, 784–790 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Shen, H. et al. Photoluminescence quenching of hydrophobic Ag29 nanoclusters caused by molecular decoupling during aqueous phase transfer and emissionrecovery through supramolecular recoupling. Angew. Chem. Int. Ed. 63, e202317995 (2024).Article 
CAS 

Google Scholar 
Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).Article 
ADS 
CAS 

Google Scholar 
Li, Q. et al. A mono-cuboctahedral series of gold nanoclusters: photoluminescence origin, large enhancement, wide tunability, and structure-property. Correlation. J. Am. Chem. Soc. 141, 5314–5325 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhou, M., Lei, Z., Guo, Q., Wang, Q.-M. & Xia, A. Solvent dependent excited state behaviors of luminescent gold(I)–silver(I) cluster with hypercoordinated. Carbon J. Phys. Chem. C. 119, 14980–14988 (2015).Article 
CAS 

Google Scholar 
Shi, W.-Q. et al. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 383, 326–330 (2024).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Luo, L., Liu, Z., Du, X. & Jin, R. Near-infrared dual emission from the Au42(SR)32 nanocluster and tailoring of intersystem crossing. J. Am. Chem. Soc. 144, 19243–19247 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, Z. et al. Elucidating the near-infrared photoluminescence mechanism of homometal and doped M25(SR)18 nanoclusters. J. Am. Chem. Soc. 145, 19969–19981 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Z. & Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 10, 2568–2573, (2010).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Goswami, N. et al. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 7, 962–975 (2016).Article 
CAS 
PubMed 

Google Scholar 
Kang, X. et al. Bimetallic Au2Cu6 nanoclusters: strong luminescence induced by the aggregation of copper(I) complexes with Gold(0) species. Angew. Chem., Int. Ed. 55, 3611–3614 (2016).Article 
CAS 

Google Scholar 
Luo, Z. et al. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 134, 16662–16670 (2012).Article 
CAS 
PubMed 

Google Scholar 
Dong, J. et al. Synthesizing photoluminescent Au28(SCH2Ph-tBu)22 nanoclusters with structural features by using a combined method. Angew. Chem., Int. Ed. 60, 17932–17936 (2021).Article 
CAS 

Google Scholar 
Weerawardene, K. L. & Aikens, C. M. Theoretical insights into the origin of photoluminescence of Au25(SR)18- nanoparticles. J. Am. Chem. Soc. 138, 11202–11210, (2016).Article 
CAS 
PubMed 

Google Scholar 
Aikens, C. M. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters. Acc. Chem. Res. 51, 3065–3073 (2018).Article 
CAS 
PubMed 

Google Scholar 
Weerawardene, K. et al. Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons. J. Am. Chem. Soc. 141, 18715–18726 (2019).Article 
CAS 
PubMed 

Google Scholar 
Li, J.-J., Guan, Z.-J., Yuan, S.-F., Hu, F. & Wang, Q.-M. Enriching structural diversity of alkynyl-protected gold nanoclusters with chlorides. Angew. Chem. Int. Ed. 60, 6699–6703 (2021).Article 
CAS 

Google Scholar 
Luo, L. et al. Three-atom-wide gold quantum rods with periodic elongation and strongly polarized excitons. Pro. Natl Acad. Sci. 121, e2318537121 (2024).Article 
CAS 

Google Scholar 
Wang, G., Huang, T., Murray, R. W., Menard, L. & Nuzzo, R. G. Near-IR luminescence of monolayer-protected metal clusters. J. Am. Chem. Soc. 127, 812–813 (2005).Article 
CAS 
PubMed 

Google Scholar 
Wan, X.-K., Wang, J.-Q. & Wang, Q.-M. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem. Int. Ed. 60, 20748–20753 (2021).Article 
CAS 

Google Scholar 
Shichibu, Y. et al. Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18):  a stepping stone to cluster-assembled materials. J. Phys. Chem. C 111, 7845–7847 (2007).Article 
CAS 

Google Scholar 
Das, A. et al. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 134, 20286–20289 (2012).Article 
CAS 
PubMed 

Google Scholar 
Wan, X.-K., Wang, J.-Q., Nan, Z.-A. & Wang, Q.-M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 3, e1701823 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Wang, J.-Q., Guan, Z.-J., Liu, W.-D., Yang, Y. & Wang, Q.-M. Chiroptical activity enhancement via structural control: the chiral synthesis and reversible interconversion of two intrinsically chiral gold nanoclusters. J. Am. Chem. Soc. 141, 2384–2390 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y., Zeng, C., Kauffman, D. R. & Jin, R. Tuning the magic size of atomically precise gold nanoclusters via isomeric methylbenzenethiols. Nano Lett. 15, 3603–3609 (2015).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).Article 
CAS 

Google Scholar 
Crystal Data for 1: C172H161Au28F6N3O6P6S16, a = 59.872(3), b = 35.5197(10), c = 19.6889(4) Å, V = 41871(2) Å3, orthorhombic, space group Aba2, Z = 8, T = 100(2) K, 58676 reflections measured, 25703 unique (Rint = 0.0813), final R1 = 0.0815, wR2 = 0.2148 for 22569 observed reflections [I > 2 sigma(I)]. CCDC 2181997; Crystal Data for 2: C136H136Au21Cl6F3N2O5P4S13, a = 17.7872(4), b = 19.5178(6), c = 24.3621(5) Å, α = 94.019(2)°, β = 101.145(2)°, γ = 98.866(2)°, V = 8155.4(4) Å3, triclinic, space group P-1, Z = 2, T = 100(2) K, 51697 reflections measured, 24899 unique (Rint = 0.0707), final R1=0.0782, wR2=0.2130 for 19832 observed reflections [I > 2 sigma(I)]. CCDC 2181998.Yuan, F. et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat. Photon. 14, 171–176 (2019).Article 
ADS 

Google Scholar 
Balan, A. D. et al. Effect of thermal fluctuations on the radiative rate in core/shell quantum dots. Nano Lett. 17, 1629–1636 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhou, M. et al. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 364, 279–282 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wang, J.-Q. et al. Total structure determination of the largest alkynyl-protected fcc gold nanocluster Au110 and the study on its ultrafast excited-state dynamics. J. Am. Chem. Soc. 142, 18086–18092 (2020).Article 
CAS 
PubMed 

Google Scholar 
Luo, L., Liu, Z., Du, X. & Jin, R. Photoluminescence of the Au38(SR)26 nanocluster comprises three radiative processes. Commun. Chem. 6, 22 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wang, Y. et al. Tailoring carbon tails of ligands on Au52(SR)32 nanoclusters enhances the near-infrared photoluminescence quantum yield from 3.8 to 18.3%. J. Am. Chem. Soc. 145, 26328–26338 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Strouse, G. F. et al. Influence of electronic delocalization in metal-to-ligand charge transfer excited states. Inorg. Chem. 34, 473–487 (2002).Article 

Google Scholar 
Treadway, J. A. et al. Effect of delocalization and rigidity in the acceptor ligand on MLCT excited-state decay. Inorg. Chem. 35, 2242–2246 (1996).Article 
CAS 
PubMed 

Google Scholar 
Yang, H., Wang, Y., Edwards, A. J., Yan, J. & Zheng, N. High-yield synthesis and crystal structure of a green Au30 cluster co-capped by thiolate and sulfide. Chem. Commun. 50, 14325–14327 (2014).Article 
CAS 

Google Scholar 
Crasto, D., Malola, S., Brosofsky, G., Dass, A. & Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 136, 5000–5005 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zeng, C. et al. Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 138, 3950–3953 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nobusada, K. & Iwasa, T. Oligomeric gold clusters with vertex-sharing Bi- and triicosahedral. Struct. J. Phys. Chem. C. 111, 14279–14282 (2007).Article 
CAS 

Google Scholar 
Hooper, T. N. et al. Synthesis, structure and reactivity of stable homoleptic gold(i) alkene cations. Chem. Eur. J. 15, 12196–12200 (2009).Article 
CAS 
PubMed 

Google Scholar 
Wan, X.-K., Tang, Q., Yuan, S.-F., Jiang, D.-E. & Wang, Q.-M. Au19 nanocluster featuring a V-shaped alkynyl-gold motif. J. Am. Chem. Soc. 137, 652–655 (2015).Article 
CAS 
PubMed 

Google Scholar 
M. J.Frisch. et al. Gaussian 16, Revision B.01, (Gaussian Inc. 2016).Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).Article 
ADS 
CAS 

Google Scholar 
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).Article 
ADS 
CAS 

Google Scholar 
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).Article 
CAS 
PubMed 

Google Scholar 
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles