Photoactivated room temperature phosphorescence from lignin

Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).Article 
ADS 
CAS 

Google Scholar 
Dai, X., Huo, M. & Liu, Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat. Rev. Chem. 7, 854–874 (2023).Article 
CAS 

Google Scholar 
Luo, X. et al. Room-temperature phosphorescent materials derived from natural resources. Nat. Rev. Chem. 7, 800–812 (2023).Article 

Google Scholar 
Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).Article 
ADS 
CAS 

Google Scholar 
Wu, T., Huang, J. & Yan, Y. From aggregation-induced emission to organic room temperature phosphorescence through suppression of molecular vibration. Cell Rep. Phys. Sci. 3, 100771 (2022).Article 
CAS 

Google Scholar 
Baryshnikov, G., Minaev, B. & Agren, H. Theory and calculation of the phosphorescence phenomenon. Chem. Rev. 117, 6500–6537 (2017).Article 
CAS 

Google Scholar 
Sun, S., Ma, L., Wang, J., Ma, X. & Tian, H. Red-light excited efficient metal-free near-infrared room-temperature phosphorescent films. Natl Sci. Rev. 9, nwab085 (2022).Article 
CAS 

Google Scholar 
Ma, X. & Tian, H. Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res. 47, 1971–1981 (2014).Article 
CAS 

Google Scholar 
Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).Article 
CAS 

Google Scholar 
Yang, X. & Yan, D. Long-afterglow metal-organic frameworks: reversible guest-induced phosphorescence tunability. Chem. Sci. 7, 4519–4526 (2016).Article 
CAS 
PubMed Central 

Google Scholar 
Guo, J., Yang, C. & Zhao, Y. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 55, 1160–1170 (2022).Article 
CAS 

Google Scholar 
Tao, S. et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 57, 2393–2398 (2018).Article 
CAS 

Google Scholar 
Ye, W. et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 20, 1539–1544 (2021).Article 
ADS 
CAS 

Google Scholar 
Zhang, Z.-Y. & Liu, Y. Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit 6 uril. Chem. Sci. 10, 7773–7778 (2019).Article 
CAS 
PubMed Central 

Google Scholar 
Kuila, S. & George, S. J. Phosphorescence energy transfer: ambient afterglow fluorescence from water-processable and purely organic dyes via delayed sensitization. Angew. Chem. Int. Ed. 59, 9393–9397 (2020).Article 
CAS 

Google Scholar 
Zhou, Q., Yang, C. & Zhao, Y. Dynamic organic room-temperature phosphorescent systems. Chem 9, 2446–2480 (2023).Article 
CAS 

Google Scholar 
Xie, Y. & Li, Z. The development of mechanoluminescence from organic compounds: breakthrough and deep insight. Mater. Chem. Front. 4, 317–331 (2020).Article 
CAS 

Google Scholar 
Chen, B., Huang, W. & Zhang, G. Observation of chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer. Nat. Commun. 14, 1514 (2023).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Hirata, S. & Vacha, M. Circularly polarized persistent room-temperature phosphorescence from metal-free chiral aromatics in air. J. Phys. Chem. Lett. 7, 1539–1545 (2016).Article 
CAS 

Google Scholar 
Han, J., You, J., Li, X., Duan, P. & Liu, M. Full-color tunable circularly polarized luminescent nanoassemblies of achiral AIEgens in confined chiral nanotubes. Adv. Mater. 29, 1606503 (2017).Article 

Google Scholar 
Zhan, L. et al. A simple organic molecule realizing simultaneous TADF, RTP, AIE, and mechanoluminescence: understanding the mechanism behind the multifunctional emitter. Angew. Chem. Int. Ed. 58, 17651–17655 (2019).Article 
CAS 

Google Scholar 
Sun, H., Shen, S. & Zhu, L. Photo-stimuli-responsive organic room-temperature phosphorescent materials. ACS Mater. Lett. 4, 1599–1615 (2022).Article 
ADS 
CAS 

Google Scholar 
Yang, Y. et al. Tunable photoresponsive behaviors based on triphenylamine derivatives: the pivotal role of π-conjugated structure and corresponding application. Adv. Mater. 33, 2104002 (2021).Article 
CAS 

Google Scholar 
Huang, Z., He, Z., Ding, B., Tian, H. & Ma, X. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat. Commun. 13, 7841 (2022).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Gu, L. et al. Dynamic ultralong organic phosphorescence by photoactivation. Angew. Chem. Int. Ed. 57, 8425–8431 (2018).Article 
ADS 
CAS 

Google Scholar 
Xiong, S. et al. Achieving tunable organic afterglow and UV-irradiation-responsive ultralong room-temperature phosphorescence from pyridine-substituted triphenylamine derivatives. Adv. Mater. 35, 2301874 (2023).Article 
CAS 

Google Scholar 
Qian, C. et al. More than carbazole derivatives activate room temperature ultralong organic phosphorescence of benzoindole derivatives. Adv. Mater. 34, 2200544 (2022).Article 
CAS 

Google Scholar 
Jia, X. et al. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl Acad. Sci. 116, 4816–4821 (2019).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Tao, Y. et al. Resonance-induced stimuli-responsive capacity modulation of organic ultralong room temperature phosphorescence. J. Am. Chem. Soc. 144, 6946–6953 (2022).Article 
CAS 

Google Scholar 
Su, Y. et al. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 4, eaas9732 (2018).Article 
ADS 
PubMed Central 

Google Scholar 
Dou, X. et al. Advances in polymer-based organic room-temperature phosphorescence materials. Adv. Funct. Mater. 34, 2314069 (2024).Wang, J., Lou, X.-Y., Wang, Y., Tang, J. & Yang, Y.-W. Recent advances of polymer-based pure organic room temperature phosphorescent materials. Macromol. Rapid Commun. 42, 2100021 (2021).Article 
CAS 

Google Scholar 
Doi, M., Ishige, R. & Ando, S. Long-lived luminescence emitted from imide compounds dispersed in polymer matrices after continuous ultraviolet irradiation and its relation to oxygen quenching. Chemphotochem 7, e202200310 (2023).Article 
CAS 

Google Scholar 
Louis, M. et al. Blue-light-absorbing thin films showing ultralong room-temperature phosphorescence. Adv. Mater. 31, 1807887 (2019).Article 

Google Scholar 
Gmelch, M., Thomas, H., Fries, F. & Reineke, S. Programmable transparent organic luminescent tags. Sci. Adv. 5, eaau7310 (2019).Article 
ADS 
PubMed Central 

Google Scholar 
Chen, Q. et al. Long lifetimes white afterglow in slightly crosslinked polymer systems. Nat. Commun. 15, 2947 (2024).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Li, T. et al. Long-lived dynamic room temperature phosphorescent carbon dots for advanced sensing and bioimaging applications. Coord. Chem. Rev. 516, 215987 (2024).Article 
CAS 

Google Scholar 
Li, H. et al. Achieving stimuli-responsive amorphous organic afterglow in single-component copolymer through self-doping. J. Am. Chem. Soc. 13, 7343–7351 (2023).Article 

Google Scholar 
Wan, K. et al. Sustainable afterglow room-temperature phosphorescence emission materials generated using natural phenolics. Angew. Chem. Int. Ed. 61, e202202760 (2022).Article 
ADS 
CAS 

Google Scholar 
Zhang, X. et al. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat. Commun. 13, 1117 (2022).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Shi, M. et al. Confinement-modulated clusterization-triggered time-dependent phosphorescence color from xylan-carbonized polymer dots. J. Am. Chem. Soc. 146, 1294–1304 (2023).Article 

Google Scholar 
Cai, S. et al. Ultralong organic phosphorescent foams with high mechanical strength. J. Am. Chem. Soc. 143, 16256–16263 (2021).Article 
CAS 

Google Scholar 
Sun, Y. et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11, 5591 (2020).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Zhai, Y. et al. Room temperature phosphorescence from natural wood activated by external chloride anion treatment. Nat. Commun. 14, 2614 (2023).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Wan, K. et al. Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation. Nat. Commun. 13, 5508 (2022).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Yuan, J. et al. Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Rep. Phys. Sci. 2, 100542 (2021).Article 
CAS 

Google Scholar 
Cao, M. et al. Producing naturally degradable room-temperature phosphorescent materials by covalently attaching lignin to natural polymers. Cell Rep. Phys. Sci. 5, 101811 (2024).Article 
CAS 

Google Scholar 
Yin, W. et al. Producing sustainable room temperature phosphorescent materials using natural wood and sucrose. Cell Rep. Phys. Sci. 5, 101792 (2024).Article 
CAS 

Google Scholar 
Cao, M. et al. Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence. Nat. Commun. 15, 2375–2375 (2024).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Guo, H. et al. Photocured room temperature phosphorescent materials from lignosulfonate. Nat. Commun. 15, 1590–1590 (2024).Article 
ADS 
CAS 
PubMed Central 

Google Scholar 
Nagarajan, V., Mohanty, A. K. & Misratt, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 4, 2899–2916 (2016).Article 
CAS 

Google Scholar 
Chung, Y. et al. A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain. Chem. Eng. 1, 1231–1238 (2013).Article 
CAS 

Google Scholar 
Chile, L., Kaser, S. J., Hatzikiriakos, S. G. & Mehrkhodavandi, P. Synthesis and thermorheological analysis of biobased lignin-graft-poly(lactide) copolymers and their blends. ACS Sustain. Chem. Eng. 6, 1650–1661 (2018).Article 
CAS 

Google Scholar 
Boarino, A., Schreier, A., Leterrier, Y. & Klok, H.-A. Uniformly dispersed poly(lactic acid)-grafted lignin nanoparticles enhance antioxidant activity and UV-barrier properties of poly(lactic acid) packaging films. Acs. Appl. Polym. Mater. 4, 4808–4817 (2022).Article 
CAS 
PubMed Central 

Google Scholar 
Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).Article 
CAS 

Google Scholar 
Zhang, Y. et al. π-π interaction-induced organic long-wavelength room-temperature phosphorescence for in vivo atherosclerotic plaque imaging. Angew. Chem. Int. Ed. 63, e202313890 (2024).Article 
CAS 

Google Scholar 
Liu, R., Jiang, T., Liu, D. & Ma, X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci. China Chem. 65, 1100–1104 (2022).Article 
CAS 

Google Scholar 
Nie, X. et al. Broad-band visible-light excitable room-temperature phosphorescence via polymer site-isolated dye aggregates. Adv. Opt. Mater. 10, 2200099 (2022).Article 
CAS 

Google Scholar 
Liu, X. et al. Selective removal of phenolic compounds by peroxydisulfate activation: inherent role of hydrophobicity and interface ROS. Environ. Sci. Technol. 56, 2665–2676 (2022).Article 
ADS 
CAS 

Google Scholar 
Liu, X. et al. A photosensitive sustainable lignin nanoplatform for multimodal image-guided mitochondria-targeted photodynamic and photothermal therapy. Mater. Today Chem. 26, 101000 (2022).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles