Emerging chiral two-dimensional materials | Nature Chemistry

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).Article 
CAS 
PubMed 

Google Scholar 
Du, Z. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492–496 (2020).Article 
CAS 
PubMed 

Google Scholar 
Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).Article 
CAS 

Google Scholar 
Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).Article 
CAS 
PubMed 

Google Scholar 
Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).Article 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).Article 
CAS 
PubMed 

Google Scholar 
Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).Article 
CAS 
PubMed 

Google Scholar 
Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. Two-dimensional metal–organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).Article 
CAS 
PubMed 

Google Scholar 
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).Article 
CAS 
PubMed 

Google Scholar 
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).Article 
CAS 

Google Scholar 
Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pham, P. V. et al. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022).Article 
CAS 
PubMed 

Google Scholar 
Hu, C.-X., Shin, Y., Read, O. & Casiraghi, C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 13, 460–484 (2021).Article 
CAS 
PubMed 

Google Scholar 
Mendes, R. G. et al. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13, 978–995 (2019).CAS 
PubMed 

Google Scholar 
Backes, C. et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem. Mater. 29, 243–255 (2017).Article 
CAS 

Google Scholar 
Shen, B., Kim, Y. & Lee, M. Supramolecular chiral 2D materials and emerging functions. Adv. Mater. 32, 1905669 (2020).Article 
CAS 

Google Scholar 
Gong, W., Chen, Z., Dong, J., Liu, Y. & Cui, Y. Chiral metal–organic frameworks. Chem. Rev. 122, 9078–9144 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).Article 
CAS 
PubMed 

Google Scholar 
Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl Acad. Sci. USA 90, 5076–5080 (1993).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, J. et al. Ultrathin chiral metal–organic-framework nanosheets for efficient enantioselective separation. Angew. Chem. Int. Ed. 57, 6873–6877 (2018).Article 
CAS 

Google Scholar 
Tan, C. et al. Boosting enantioselectivity of chiral organocatalysts with ultrathin two-dimensional metal–organic framework nanosheets. J. Am. Chem. Soc. 141, 17685–17695 (2019).Article 
CAS 
PubMed 

Google Scholar 
Makam, P. et al. Single amino acid bionanozyme for environmental remediation. Nat. Commun. 13, 1505 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, L., Zhang, D., Zhu, Y. & Han, Y. Bulk and local structures of metal–organic frameworks unravelled by high-resolution electron microscopy. Commun. Chem. 3, 99 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).Article 
CAS 
PubMed 

Google Scholar 
Liu, Y. et al. Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks. J. Am. Chem. Soc. 143, 3509–3518 (2021).Article 
CAS 
PubMed 

Google Scholar 
Guo, Y., Nuermaimaiti, A., Kjeldsen, N. D., Gothelf, K. V. & Linderoth, T. R. Two-dimensional coordination networks from cyclic dipeptides. J. Am. Chem. Soc. 142, 19814–19818 (2020).Article 
CAS 
PubMed 

Google Scholar 
Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).Article 
CAS 
PubMed 

Google Scholar 
Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dong, J., Han, X., Liu, Y., Li, H. & Cui, Y. Metal–covalent organic frameworks (MCOFs): a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 59, 13722–13733 (2020).Article 
CAS 

Google Scholar 
Wu, X. et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 141, 7081–7089 (2019).Article 
CAS 
PubMed 

Google Scholar 
Dong, J. et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 31, 146–160 (2019).Article 
CAS 

Google Scholar 
Han, X. et al. Chiral induction in covalent organic frameworks. Nat. Commun. 9, 1294 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Chen, H., Gu, Z.-G. & Zhang, J. Chiral-induced ultrathin covalent organic frameworks nanosheets with tunable circularly polarized luminescence. J. Am. Chem. Soc. 144, 7245–7252 (2022).Article 
CAS 
PubMed 

Google Scholar 
Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).Article 
CAS 
PubMed 

Google Scholar 
Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, S., Zhou, J. & Li, H. Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angew. Chem. Int. Ed. 61, e202204012 (2022).Article 
CAS 

Google Scholar 
Sun, B. et al. Homochiral porous nanosheets for enantiomer sieving. Nat. Mater. 17, 599–604 (2018).Article 
CAS 
PubMed 

Google Scholar 
Chen, T., Yang, W.-H., Wang, D. & Wan, L.-J. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. Nat. Commun. 4, 1389 (2013).Article 
PubMed 

Google Scholar 
Fang, Y. et al. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nat. Chem. 8, 711–717 (2016).Article 
CAS 
PubMed 

Google Scholar 
Sun, B. et al. Asymmetric transformation driven by confinement and self-release in single-layered porous nanosheets. Angew. Chem. Int. Ed. 59, 22690–22696 (2020).Article 
CAS 

Google Scholar 
Insua, I. & Montenegro, J. 1D to 2D self assembly of cyclic peptides. J. Am. Chem. Soc. 142, 300–307 (2020).Article 
CAS 
PubMed 

Google Scholar 
Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).Article 

Google Scholar 
Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wei, W.-J. et al. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets. J. Am. Chem. Soc. 141, 9134–9139 (2019).Article 
CAS 
PubMed 

Google Scholar 
Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).Article 
CAS 

Google Scholar 
Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).Article 
CAS 

Google Scholar 
Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).Article 
CAS 
PubMed 

Google Scholar 
Ahn, J. et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J. Am. Chem. Soc. 142, 4206–4212 (2020).Article 
CAS 
PubMed 

Google Scholar 
Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).Article 

Google Scholar 
Zhu, T. et al. Chain-to-layer dimensionality engineering of chiral hybrid perovskites to realize passive highly circular-polarization-sensitive photodetection. J. Am. Chem. Soc. 144, 18062–18068 (2022).Article 
CAS 
PubMed 

Google Scholar 
Li, D. et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew. Chem. Int. Ed. 60, 8415–8418 (2021).Article 
CAS 

Google Scholar 
Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).Article 
CAS 
PubMed 

Google Scholar 
Guo, Z. et al. Giant optical activity and second harmonic generation in 2D hybrid copper halides. Angew. Chem. Int. Ed. 60, 8441–8445 (2021).Article 
CAS 

Google Scholar 
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).Article 
CAS 
PubMed 

Google Scholar 
Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhu, C. et al. Diversity in S-layers. Prog. Biophys. Mol. Biol. 123, 1–15 (2017).Article 
PubMed 

Google Scholar 
Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ben-Sasson, A. J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hassan, Z., Spuling, E., Knoll, D. M., Lahann, J. & Bräse, S. Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem. Soc. Rev. 47, 6947–6963 (2018).Article 
CAS 
PubMed 

Google Scholar 
Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: Chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).Article 
CAS 
PubMed 

Google Scholar 
Dong, J., Liu, Y. & Cui, Y. Supramolecular chirality in metal–organic complexes. Acc. Chem. Res. 54, 194–206 (2021).Article 
CAS 
PubMed 

Google Scholar 
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, S. et al. Quantum interference directed chiral Raman scattering in two-dimensional enantiomers. Nat. Commun. 13, 1254 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chem. Sci. 8, 2859–2867 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).Article 
CAS 
PubMed 

Google Scholar 
Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).Article 
PubMed 

Google Scholar 
Xu, J. et al. Halide perovskites for nonlinear optics. Adv. Mater. 32, 1806736 (2020).Article 
CAS 

Google Scholar 
Han, X., Zheng, Y., Chai, S., Chen, S. & Xu, J. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics 9, 1787–1810 (2020).Article 
CAS 

Google Scholar 
Wu, Z. & Zheng, Y. Moiré chiral metamaterials. Adv. Opt. Mater. 5, 1700034 (2017).Article 

Google Scholar 
Bailey, J. B. & Tezcan, F. A. Tunable and cooperative thermomechanical properties of protein–metal–organic frameworks. J. Am. Chem. Soc. 142, 17265–17270 (2020).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles