Deep learning large-scale drug discovery and repurposing

DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).Article 

Google Scholar 
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).Article 

Google Scholar 
Rask-Andersen, M., Almen, M. S. & Schioth, H. B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).Article 

Google Scholar 
Lee, H. & Lee, J. W. Target identification for biologically active small molecules using chemical biology approaches. Arch. Pharm. Res. 39, 1193–1201 (2016).Article 

Google Scholar 
Ha, J. et al. Recent advances in identifying protein targets in drug discovery. Cell Chem. Biol. 28, 394–423 (2021).Article 

Google Scholar 
Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).Article 

Google Scholar 
Chandrasekaran, S. N. et al. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 20, 145–159 (2021).Article 

Google Scholar 
Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).Article 

Google Scholar 
Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 e9 (2022).Article 

Google Scholar 
Funk, L. et al. The phenotypic landscape of essential human genes. Cell 185, 4634–4653 e22 (2022).Article 

Google Scholar 
Thyme, S. B. et al. Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478–491.e20 (2019).Article 

Google Scholar 
Simm, J. et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem. Biol. 25, 611–618.e3 (2018).Article 

Google Scholar 
Nyffeler, J. et al. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 389, 114876 (2020).Article 

Google Scholar 
Pegoraro, G. & Misteli, T. High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet. 33, 604–615 (2017).Article 

Google Scholar 
Bray, M. A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).Article 

Google Scholar 
Hofmarcher, M. et al. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J. Chem. Inf. Model. 59, 1163–1171 (2019).Article 

Google Scholar 
Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).Article 

Google Scholar 
Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).Article 

Google Scholar 
Russell, O. M. et al. Mitochondrial diseases: hope for the future. Cell 181, 168–188 (2020).Article 

Google Scholar 
Jangili, P. et al. DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61, e202117075 (2022).Article 

Google Scholar 
Carelli, V. & Chan, D. C. Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron 84, 1126–1142 (2014).Article 

Google Scholar 
Glancy, B. Visualizing mitochondrial form and function within the cell. Trends Mol. Med. 26, 58–70 (2020).Article 

Google Scholar 
Cretin, E. et al. High-throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts. EMBO Mol. Med. 13, e13579 (2021).Article 

Google Scholar 
Varkuti, B. H. et al. Neuron-based high-content assay and screen for CNS active mitotherapeutics. Sci. Adv. 6, eaaw8702 (2020).Article 

Google Scholar 
Chandrasekharan, A. et al. A high-throughput real-time in vitro assay using mitochondrial targeted roGFP for screening of drugs targeting mitochondria. Redox Biol. 20, 379–389 (2019).Article 

Google Scholar 
Iannetti, E. F. et al. Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat. Protoc. 11, 1693–1710 (2016).Article 

Google Scholar 
Pereira, G. C. et al. Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr. Pharm. Des. 17, 2113–2129 (2011).Article 

Google Scholar 
Varga, Z. V. et al. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart. Circ. Physiol. 309, H1453–H1467 (2015).Article 

Google Scholar 
Stringer, C. et al. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).Article 

Google Scholar 
Cao, M. et al. Plant exosome nanovesicles (PENs): green delivery platforms. Mater. Horiz. 10, 3879–3894 (2023).Article 

Google Scholar 
Zhang, D. et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022).Article 

Google Scholar 
Ji, X. et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021).Article 

Google Scholar 
Zhong, D. et al. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 7, eabi9265 (2021).Article 

Google Scholar 
Chen, F. et al. The V-ATPases in cancer and cell death. Cancer Gene Ther. 29, 1529–1541 (2022).Article 

Google Scholar 
Rizzuto, R. et al. Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).Article 

Google Scholar 
Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).Article 

Google Scholar 
Schmitt, N., Grunnet, M. & Olesen, S. P. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol. Rev. 94, 609–653 (2014).Article 

Google Scholar 
Lei, M. et al. Modernized classification of cardiac antiarrhythmic drugs. Circulation 138, 1879–1896 (2018).Article 

Google Scholar 
Zheng, Z., Zheng, L. & Yang, Y. A discriminatively learned CNN embedding for person reidentification. In ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) Vol. 14, 1–20 (ACM, 2017).Luo, H. et al. Bag of tricks and a strong baseline for deep person re-identification. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (IEEE, 2019).Carreira, J. & A. Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset. Proc. IEEE Conference on Computer Vision and Pattern Recognition 6299–6308 (IEEE, 2017).Hermans, A., Beyer, L. & Leibe, B. In defense of the triplet loss for person re-identification. Preprint at https://arxiv.org/abs/1703.07737 (2017).Wen, Y. et al. A discriminative feature learning approach for deep face recognition. In European Conference On Computer Vision 499–515 (Springer, 2016).Szegedy, C. et al. Rethinking the inception architecture for computer vision. Proc. IEEE Conference On Computer Vision And Pattern Recognition 2818–2826 (2016).Moon, H. & Phillips, P. J. Computational and performance aspects of PCA-based face-recognition algorithms. Perception 30, 303–321 (2001).Article 

Google Scholar 
Zheng, L. et al. Scalable person re-identification: a benchmark. In Proc. IEEE International Conference On Computer Vision 1116–1124 (IEEE, 2015).Atanasov, A. G. et al. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).Article 

Google Scholar 
Zhou, J. et al. Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020).Article 

Google Scholar 
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).Article 

Google Scholar 
Corsello, S. M. et al. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).Article 

Google Scholar 
Zdrazil, B. et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 52, D1180–D1192 (2024).Article 

Google Scholar 
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).Article 

Google Scholar 
MetaXpress v.6.6 https://www.moleculardevices.com/products/cellular-imaging-systems/high-content-analysis/metaxpress (Molecular Devices, 2020).AutoDock v.4.2.6 https://autodock.scripps.edu/ (CCSB, 2014).ChemOffice v.19.0 https://revvitysignals.com/products/research/chemdraw (Revvity Signals, 2019).Goodsell, D. S. et al. RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci. 29, 52–65 (2020).Article 

Google Scholar 
PyMOL v.2.5 https://pymol.org/ (Schrödinger, 2021).Zhang, S. et al. Discovery of herbacetin as a novel SGK1 inhibitor to alleviate myocardial hypertrophy. Adv. Sci. 9, e2101485 (2022).Article 

Google Scholar 
He, K. et al. Deep residual learning for image recognition. Proc. IEEE Conference On Computer Vision And Pattern Recognition 770–778 (IEEE, 2016).Schroff, F., Kalenichenko, D. & Philbin, P. FaceNet: a unified embedding for face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2015).He, K. et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. Proc. IEEE International Conference On Computer Vision 1026–1034 (IEEE, 2015).LeCun, Y. et al. Backpropagation applied to handwritten ZIP Code recognition. Neural Comput. 1, 541–551 (1989).Article 

Google Scholar 
Li, W., Yu, M. & Wang, Y. Data for Deep Learning Large-Scale Drug Discovery and Repurposing (Zenodo, 2024); https://doi.org/10.5281/zenodo.12730131Li, W. liweim/MitoReID: v1.0 (Zenodo, 2024); https://doi.org/10.5281/zenodo.12726571

Hot Topics

Related Articles