A Thorium(IV) metallacyclopropyne complex | Nature Communications

Rosenthal, U. et al. Bis(trimethylsilyl)acetylene complexes of titanocenes and zirconocenes: Their recent chemistry and reactions with lewis acids. Eur. J. Inorg. Chem. 2004, 4739–4749 (2004).Article 

Google Scholar 
Suzuki, N. & Hashizume, D. Five-membered metallacycloalkynes formed from group 4 metals and [n]cumulene (n = 3, 5) ligands. Coord. Chem. Rev. 254, 1307–1326 (2010).Article 
CAS 

Google Scholar 
Roy, S., Rosenthal, U. & Jemmis, E. D. Metallacyclocumulenes: a theoretical perspective on the structure, bonding, and reactivity. Acc. Chem. Res. 47, 2917–2930 (2014).Article 
CAS 
PubMed 

Google Scholar 
Parker, K. D. J. & Fryzuk, M. D. Synthesis, structure, and reactivity of niobium and tantalum alkyne complexes. Organometallics 34, 2037–2047 (2015).Article 
CAS 

Google Scholar 
Zi, G. Recent developments in actinide metallacycles. Chem. Commun. 54, 7412–7430 (2018).Article 
CAS 

Google Scholar 
Johnson, K. R. D. & Hayes, P. G. Cyclometalative C-H bond activation in rare earth and actinide metal complexes. Chem. Soc. Rev. 42, 1947–1960 (2013).Article 
CAS 
PubMed 

Google Scholar 
Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).Article 
CAS 

Google Scholar 
Liddle, S. T. The renaissance of non‐aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).Article 
ADS 
CAS 

Google Scholar 
Fang, B. et al. An actinide metallacyclopropene complex: synthesis, structure, reactivity, and computational studies. J. Am. Chem. Soc. 136, 17249–17261 (2014).Article 
CAS 
PubMed 

Google Scholar 
Fang, B. et al. C-H bond activation induced by thorium metallacyclopropene complexes: A combined experimental and computational study. Chem. Sci. 6, 4897–4906 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, L., Hou, G., Zi, G., Ding, W. & Walter, M. D. Influence of the 5f orbitals on the bonding and reactivity in organoactinides: Experimental and computational studies on a uranium metallacyclopropene. J. Am. Chem. Soc. 138, 5130–5142 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, D., Ding, W., Hou, G., Zi, G. & Walter, M. D. Uranium versus thorium: synthesis and reactivity of [η5-1,2,4-(Me3C)3C5H2]2U[η2-C2Ph2]. Chem.-Eur. J. 27, 6767–6782 (2021).Fang, B., Hou, G., Zi, G., Ding, W. & Walter, M. D. Steric and electronic influences of internal alkynes on the formation of thorium metallacycles: a combined experimental and computational study. Organometallics 35, 1384–1391 (2016).Article 
CAS 

Google Scholar 
Fang, B., Hou, G., Zi, G., Fang, D.-C. & Walter, M. D. A thorium metallacyclopentadiene complex: A combined experimental and computational study. Dalton Trans. 44, 7927–7934 (2015).Article 
CAS 
PubMed 

Google Scholar 
Fang, B. et al. Experimental and computational studies on an actinide metallacyclocumulene complex. Organometallics 34, 5669–5681 (2015).Article 
CAS 

Google Scholar 
Zhang, L., Hou, G., Zi, G., Ding, W. & Walter, M. D. Preparation of a uranium metallacyclocumulene and its reactivity towards unsaturated organic molecules. Dalton Trans. 46, 3716–3728 (2017).Article 
CAS 
PubMed 

Google Scholar 
Foyentin, M., Folcher, G. & Ephritikhine, M. Alkyne-and alkyl-tris (cyclopentadienyl) complexes of uranium (III). J. Chem. Soc., Chem. Commun. 7, 494–495 (1987).Saxe, P. & Schaefer, H. F. III Can cyclopropyne really be made? J. Am. Chem. Soc. 102, 3239–3240 (1980).Article 
CAS 

Google Scholar 
Sherrill, C. D., Brandow, C. G., Allen, W. D. & Schaefer, H. F. III Cyclopropyne and silacyclopropyne: A world of difference. J. Am. Chem. Soc. 118, 7158–7163 (1996).Article 
CAS 

Google Scholar 
Seburg, R. A., Patterson, E. V., Stanton, J. F. & McMahon, R. J. Structures, automerizations, and isomerizations of C3H2 isomers. J. Am. Chem. Soc. 119, 5847–5856 (1997).Article 
CAS 

Google Scholar 
Gong, Y., Zhou, M. & Andrews, L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 109, 6765–6808 (2009).Article 
CAS 
PubMed 

Google Scholar 
Andrews, L. et al. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen. J. Phys. Chem. A 118, 5289–5303 (2014).Article 
CAS 
PubMed 

Google Scholar 
Wei, R. et al. Infrared spectroscopic and theoretical studies of the 3d transition metal oxyfluoride molecules. Inorg. Chem. 58, 9796–9810 (2019).Article 
CAS 
PubMed 

Google Scholar 
Andrews, L., Kushto, G. P. & Marsden, C. J. Reactions of Th and U atoms with C2H2: Infrared spectra and relativistic calculations of the metallacyclopropene, actinide insertion, and ethynyl products. Chem. Eur. J. 12, 8324–8335 (2006).Article 
CAS 
PubMed 

Google Scholar 
O’Hair, R. A. J. & Rijs, N. J. Gas phase studies of the pesci decarboxylation reaction: Synthesis, structure, and unimolecular and bimolecular reactivity of organometallic Ions. Acc. Chem. Res. 48, 329–340 (2015).Article 
PubMed 

Google Scholar 
Dau, P. D. et al. Synthesis and hydrolysis of uranyl, neptunyl, and plutonyl gas-phase complexes exhibiting discrete actinide-carbon bonds. Organometallics 35, 1228–1240 (2016).Article 
CAS 

Google Scholar 
Xiong, Z., Chen, X. & Gong, Y. Mass spectrometric and theoretical study on the formation of uranyl hydride from uranyl carboxylate. Phys. Chem. Chem. Phys. 23, 20073–20079 (2021).Article 
CAS 
PubMed 

Google Scholar 
Xiong, Z., Yang, M., Chen, X. & Gong, Y. Influence of metal coordination on the gas-phase chemistry of the positional isomers of fluorobenzoate complexes. J. Am. Soc. Mass Spectrom. 33, 2181–2190 (2022).Article 
CAS 
PubMed 

Google Scholar 
Chen, X., Xiong, Z., Yang, M. & Gong, Y. Discrimination and quantitation of halobenzoic acid positional isomers upon Th(IV) coordination by mass spectrometry. Chem. Commun. 58, 2658–2661 (2022).Article 
CAS 

Google Scholar 
Chen, X., Xiong, Z., Yang, M. & Gong, Y. Gas-phase synthesis and structure of thorium benzyne complexes. Chem. Commun. 58, 7018–7021 (2022).Article 
CAS 

Google Scholar 
Xiong, Z., Yang, M., Chen, X. & Gong, Y. Dual-ligand strategy for the preparation of gas-phase uranyl(VI) benzyne complexes from uranyl(VI) benzoates. Inorg. Chem. 62, 2266–2272 (2023).Article 
CAS 
PubMed 

Google Scholar 
Seaman, L. A. et al. Comparison of the reactivity of 2-Li-C6H4CH2NMe2 with MCl4 (M = Th, U): Isolation of a thorium aryl complex or a uranium benzyne complex. Angew. Chem. Int. Ed. 52, 10589–10592 (2013).Article 
CAS 

Google Scholar 
Suvova, M. et al. Thorium(IV) and uranium(IV) trans-Calix[2]benzene[2]pyrrolide alkyl and alkynyl complexes: Synthesis, reactivity, and electronic structure. Organometallics 36, 4669–4681 (2017).Article 
CAS 

Google Scholar 
Dickie, T. K., Aborawi, A. A. & Hayes, P. G. Diphosphazide-supported trialkyl thorium (IV) complex. Organometallics 39, 2047–2052 (2020).Article 
CAS 

Google Scholar 
Kent, G. T., Yu, X., Wu, G., Autschbach, J. & Hayton, T. W. Synthesis and electronic structure analysis of the actinide allenylidenes, [{(NR2)3}An(CCCPh2)]− (An = U, Th; R = SiMe3). Chem. Sci. 12, 14383–14388 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Tatosian, I. et al. Formation and hydrolysis of gas-phase [UO2(R)]+: R = CH3, CH2CH3, CH=CH2, and C6H5. J. Mass Spectrom. 54, 780–789 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Frisch, M. J. et al. Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford, CT (2009).Lee, C., Yang, W. & Parr, R. G. Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).Article 
ADS 
CAS 

Google Scholar 
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).Article 
ADS 
CAS 

Google Scholar 
Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).Article 
ADS 

Google Scholar 
Krishnan, R. B. J. S., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).Article 
ADS 
CAS 

Google Scholar 
McLean, A. D. & Chandler, G. S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J. Chem. Phys. 72, 5639–5648 (1980).Article 
ADS 
CAS 

Google Scholar 
Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem. 74, 4161–4163 (1970).Article 
CAS 

Google Scholar 
Fukui, K. The path of chemical reactions-the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).Article 
CAS 

Google Scholar 
Glendening, E. D., et al. Natural Bond Order 6.0, Theoretical Chemistry Institute, University of Wisconsin: Madison, WI http://nbo6.chem.wisc.edu/ (2013).Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).Article 
ADS 
CAS 

Google Scholar 
Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. a polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).Article 
ADS 
CAS 

Google Scholar 
Legault, C. Y. CYLview20, http://www.cylview.org (Université de Sherbrooke, 2020).Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).Article 
PubMed 

Google Scholar 

Hot Topics

Related Articles