Nickel(II)/BINOL-catalyzed enantioselective C–H activation via desymmetrization and kinetic resolution

Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving c−h bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).Article 
CAS 
PubMed 

Google Scholar 
Saint-Denis, T. G. et al. (sp3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Yoshino, T., Satake, S. & Matsunaga, S. Diverse approaches for enantioselective C−H functionalization reactions using group 9 CpxMIII catalysts. Chem. Eur. J. 26, 7346–7357 (2020).Article 
CAS 
PubMed 

Google Scholar 
Achar, T. K., Maiti, S., Jana, S. & Maiti, D. Transition metal catalyzed enantioselective C(sp2)–H bond functionalization. ACS Catal. 10, 13748–13793 (2020).Article 
CAS 

Google Scholar 
Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: The discovery and development of bifunc-tional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Vyhivskyi, O., Kudashev, A., Miyakoshi, T. & Baudoin, O. Chiral Catalysts for Pd0-catalyzed enantioselective C−H activation. Chem. Eur. J. 27, 1231–1257 (2021).Article 
CAS 
PubMed 

Google Scholar 
Zhan, B.-B., Jin, L., Shi, B.-F. & Palladium-Catalyzed Enantioselective, C. –H. Functionalization via C–H palladation. Trends Chem. 4, 220–235 (2022).Article 

Google Scholar 
Liu, C.-X. et al. Rhodium-catalyzed asymmetric C–H functionalization reactions. Chem. Rev. 123, 10079–10134 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1866 (2011).Article 
CAS 

Google Scholar 
Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudohalides with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004).Article 
CAS 

Google Scholar 
Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Poremba, K. E., Dibrell, S. E. & Reisman, S. E. Nickel-catalyzed enantioselective reductive cross-coupling reactions. ACS Catal. 10, 8237–8246 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, J., Ye, Y., Sessler, J. L. & Gong, H. Cross-electrophile couplings of activated and sterically hindered halides and alcohol derivatives. Acc. Chem. Res 53, 1833–1845 (2020).Article 
CAS 
PubMed 

Google Scholar 
Khake, S. M., Chatani, N. & Chelation-Assisted Nickel-Catalyzed, C. −H. Functionalizations. Trends Chem. 1, 524–539 (2019).Article 
CAS 

Google Scholar 
Liu, Y.-H., Xia, Y.-N. & Shi, B.-F. Ni-catalyzed chelation-assisted direct functionalization of inert C−H bonds. Chin. J. Chem. 38, 635–662 (2020).Article 
CAS 

Google Scholar 
Donets, P. A. & Cramer, N. Ligand-controlled regiodivergent nickel-catalyzed annulation of pyridones. Angew. Chem., Int. Ed. 54, 633–637 (2015).Article 
CAS 

Google Scholar 
Diesel, J., Finogenova, A. M. & Cramer, N. Nickel-catalyzed enantioselective pyridone C–H functionalizations enabled by a bulky n-heterocyclic carbene ligand. J. Am. Chem. Soc. 140, 4489–4493 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, Y.-X. et al. Enantioselective Ni–Al bimetallic catalyzed exo-selective C–H cyclization of imidazoles. Alkenes. J. Am. Chem. Soc. 140, 5360–5364 (2018).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Diesel, J., Grosheva, D., Kodama, S. & Cramer, N. A bulky chiral N-heterocyclic carbene nickel catalyst enables enantioselective C–H functionalizations of indoles and pyrroles. Angew. Chem. Int. Ed. 58, 11044–11048 (2019).Article 
CAS 

Google Scholar 
Loup, J., Mueller, V., Ghorai, D. & Ackermann, L. Enantioselective aluminum-free alkene hydroarylations through C–H activation by a chiral Nickel/JoSPOphos manifold. Angew. Chem. Int. Ed. 58, 1749–1753 (2019).Article 
CAS 

Google Scholar 
Zhang, W.-B., Yang, X.-T., Ma, J.-B., Su, Z.-M. & Shi, S.-L. Regio- and enantioselective C–H cyclization of pyridines with alkenes enabled by a Nickel/N-heterocyclic carbene catalysis. J. Am. Chem. Soc. 141, 5628–5634 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chen, H. et al. Annulation of formamides and alkynes without built-in chelating groups. Angew. Chem. Int. Ed. 59, 9428–9432 (2020).Article 
ADS 
CAS 

Google Scholar 
Li, J.-F. et al. Enantioselective C2–H alkylation of pyridines with 1,3-dienes via Ni-Al bimetallic catalysis. J. Am. Chem. Soc. 144, 18810 (2022).Article 
CAS 
PubMed 

Google Scholar 
Cheng, X., Lu, H. & Lu, Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. Nat. Commun. 10, 3549 (2019).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Cheng, X., Li, T., Liu, Y. & Lu, Z. Stereo- and enantioselective benzylic C–H alkenylation via photoredox/nickel dual catalysis. ACS Catal. 11, 11059–11065 (2021).Article 
CAS 

Google Scholar 
Woźniak, Ł. & Cramer, N. Enantioselective C-H bond functionalizations by 3d transition-metal catalysts. Trends Chem. 1, 471 (2019).Article 

Google Scholar 
Omer, H. M. & Liu, P. Computational study of Ni-Catalyzed C–H functionalization: factors that control the competition of oxidative addition and radical pathways. J. Am. Chem. Soc. 139, 9909–9920 (2017).Article 
CAS 
PubMed 

Google Scholar 
Haines, B. E., Yu, J.-Q. & Musaev, D. G. The mechanism of directed Ni(II)-catalyzed C–H iodination with molecular iodine. Chem. Sci. 9, 1144–1154 (2018).Article 
CAS 
PubMed 

Google Scholar 
Beattie, D. D., Grunwald, A. C., Perse, T., Schafer, L. L. & Love, J. A. Understanding Ni(II)-mediated C(sp3)–H activation: Tertiary ureas as model substrates. J. Am. Chem. Soc. 140, 12602–12610 (2018).Article 
CAS 
PubMed 

Google Scholar 
Roy, P., Bour, J. R., Kampf, J. W. & Sanford, M. S. Catalytically relevant intermediates in the Ni-catalyzed C(sp2)–H and C(sp3)–H functionalization of aminoquinoline substrates. J. Am. Chem. Soc. 141, 17382–17387 (2019).Article 
CAS 
PubMed 

Google Scholar 
Fu, G. C. Applications of planar-chiral heterocycles as ligands in asymmetric catalysis. Acc. Chem. Res. 39, 853–860 (2006).Article 
CAS 
PubMed 

Google Scholar 
Dai, L.-X., Tu, T., You, S.-L., Deng, W.-P. & Hou, X.-L. Asymmetric catalysis with chiral ferrocene ligands. Acc. Chem. Res. 36, 659–667 (2003).Article 
CAS 
PubMed 

Google Scholar 
van Staveren, D. R. & Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931–5985 (2004).Article 
PubMed 

Google Scholar 
Liu, C.-X., Gu, Q., You, S.-L. & Asymmetric, C. –H. Bond functionalization of ferrocenes: New opportunities and challenges. Trends Chem. 2, 737–749 (2020).Article 
CAS 

Google Scholar 
López, L. A. & López, E. Recent advances in transition metal-catalyzed C–H bond functionalization of ferrocene derivatives. Dalton Trans. 44, 10128–10135 (2015).Article 
PubMed 

Google Scholar 
Gao, D.-W., Gu, Q., Zheng, C. & You, S.-L. Synthesis of planar chiral ferrocenes via transition-metal-catalyzed direct C–H bond functionalization. Acc. Chem. Res. 50, 351–365 (2017).Article 
CAS 
PubMed 

Google Scholar 
Gao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids. J. Am. Chem. Soc. 135, 86–89 (2013).Article 
CAS 
PubMed 

Google Scholar 
Deng, R. et al. PallAdium-catalyzed Intramolecular Asymmetric C–H functionalization/cyclization reaction of metallocenes: An efficient approach toward the synthesis of planar chiral metallocene compounds. J. Am. Chem. Soc. 136, 4472–4475 (2014).Article 
CAS 
PubMed 

Google Scholar 
Zhou, L. et al. Synthesis of planar chiral ferrocenes via enantioselective remote C–H activation. Nat. Chem. 15, 815–823 (2023).Article 
CAS 
PubMed 

Google Scholar 
Lou, S.-J. et al. Alkenylation of Ferrocenes with Alkynes by Half-Sandwich Scandium Catalyst. J. Am. Chem. Soc. 143, 2470–2476 (2021).Article 
CAS 
PubMed 

Google Scholar 
Huang, F.-R., Zhang, P., Yao, Q.-J. & Shi, B.-F. Construction of planar chiral ferrocenes by cobalt-catalyzed enantioselective C–H acyloxylation enabled by dual ligands. CCS Chem. 6, https://doi.org/10.31635/ccschem.024.202303709 (2024).Shibata, T. & Shizuno, T. Iridium-catalyzed enantioselective C–H alkylation of ferrocenes with alkenes using chiral diene ligands. Angew. Chem. Int. Ed. 53, 5410–5413 (2014).Article 
CAS 

Google Scholar 
Zaitsev, G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C−H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).Article 
CAS 
PubMed 

Google Scholar 
Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aihara, Y. & Chatani, N. Nickel-catalyzed direct alkylation of C−H bonds in benzamides and acrylamides with functionalized alkyl halides via bidentate-chelation assistance. J. Am. Chem. Soc. 135, 5308–5311 (2013).Article 
CAS 
PubMed 

Google Scholar 
Aihara, Y. & Chatani, N. Nickel-catalyzed direct arylation of C(sp3)−H bonds in aliphatic amides via bidentate-chelation assistance. J. Am. Chem. Soc. 136, 898–901 (2014).Article 
CAS 
PubMed 

Google Scholar 
Wu, X., Zhao, Y. & Ge, H. Nickel-catalyzed site-selective alkylation of unactivated C(sp3)−H bonds. J. Am. Chem. Soc. 136, 1789–1792 (2014).Article 
CAS 
PubMed 

Google Scholar 
Li, M. et al. Nickel-catalyzed chelation-assisted direct arylation of unactivated C(sp3)–H bonds with aryl halides. Chem. Commun. 50, 3944–3946 (2014).Article 
ADS 
CAS 

Google Scholar 
Liu, Y.-J., Liu, Y.-H., Yan, S.-Y. & Shi, B.-F. A sustainable and simple catalytic system for direct alkynylation of C(sp2)–H bonds with low nickel loadings. Chem. Commun. 51, 6388–6391 (2015).Article 
CAS 

Google Scholar 
Yan, S.-Y. et al. Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds with disulfides. Chem. Commun. 51, 7341–7344 (2015).Article 
ADS 
CAS 

Google Scholar 
Cheng, Y., Wu, Y., Tan, G. & You, J. Nickel catalysis enables oxidative C(sp2)–H/C(sp2)–H cross-coupling reactions between two heteroarenes. Angew. Chem. Int. Ed. 55, 12275–12279 (2016).Article 
CAS 

Google Scholar 
Maity, S., Agasti, S., Earsad, A. M., Hazra, A. & Maiti, D. Nickel-catalyzed insertion of alkynes and electron-deficient olefins into unactivated sp3 C–H bonds. Chem. -Eur. J. 21, 11320–11324 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3212 (2003).Article 
CAS 
PubMed 

Google Scholar 
Liu, C.-X. et al. Kinetic resolution of planar chiral metallocenes using Rh-catalysed enantioselective C–H arylation. Nat. Synth. 2, 49–57 (2023).Article 
ADS 
CAS 

Google Scholar 
Gao, D.-W., Yin, Q., Gu, Q. & You, S.-L. Enantioselective synthesis of planar chiral ferrocenes via Pd(0)-catalyzed intramolecular direct C–H bond arylation. J. Am. Chem. Soc. 136, 4841–4844 (2014).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles