Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface

Sha, W. E. I., Ren, X., Chen, L. & Choy, W. C. H. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015).Article 
ADS 

Google Scholar 
Liang, P.-W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).Article 
CAS 
PubMed 

Google Scholar 
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).Article 
CAS 
PubMed 

Google Scholar 
Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).Article 
PubMed 

Google Scholar 
Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kim, H. J., Han, G. S. & Jung, H. S. Managing the lifecycle of perovskite solar cells: Addressing stability and environmental concerns from utilization to end-of-life. eScience 4, 100243 (2024).Article 

Google Scholar 
Zhu, A. et al. Playdough-like carbon electrode: A promising strategy for high efficiency perovskite solar cells and modules. eScience 4, 100221 (2024).Article 

Google Scholar 
Lu, J. et al. Non-covalent intramolecular interactions induced high-performance terpolymer donors. Adv. Funct. Mater. 34, 2312545 (2024).Article 
CAS 

Google Scholar 
Yang, S. et al. Conformational locking control of 2D outer side chains via fluorine atom positioning for improving the thermal stability of organic solar cells. ACS Appl. Mater. Interfaces 15, 39636–39646 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhong, L. et al. Solid additive delicately controls morphology formation and enables high-performance in organic solar cells. Adv. Funct. Mater. 33, 2305450 (2023).Article 
CAS 

Google Scholar 
Ren, Y. et al. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 613, 60–65 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).Article 

Google Scholar 
Lin, H. et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023).Article 
ADS 
CAS 

Google Scholar 
Li, Z. et al. Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559–1572 (2018).Article 
CAS 

Google Scholar 
Shao, S. & Loi, M. A. The role of the interfaces in perovskite solar cells. Adv. Mater. Interfaces 7, 1901469 (2020).Article 
CAS 

Google Scholar 
Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhang, H., Pfeifer, L., Zakeeruddin, S. M., Chu, J. & Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zhu, H. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32, 1907757 (2020).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 14, 6526–6535 (2021).Article 
CAS 

Google Scholar 
Zhu, P. et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 10, 1903083 (2020).Article 
CAS 

Google Scholar 
Du, X. et al. Synergistic crystallization and passivation by a single molecular additive for high-performance Perovskite solar cells. Adv. Mater. 34, 2204098 (2022).Article 
CAS 

Google Scholar 
Zhou, Q. et al. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. ACS Energy Lett. 6, 1596–1606 (2021).Article 
CAS 

Google Scholar 
Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018).Article 
CAS 

Google Scholar 
Zhao, T., Chueh, C.-C., Chen, Q., Rajagopal, A. & Jen, A. K. Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).Article 
CAS 

Google Scholar 
Wang, S. et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%. eScience 2, 339–346 (2022).Article 

Google Scholar 
Zhang, H. et al. Multimodal host-guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meng, Y. et al. Pre-buried ETL with bottom-Up strategy toward flexible perovskite solar cells with efficiency over 23%. Adv. Funct. Mater. 33, 2214788 (2023).Article 
CAS 

Google Scholar 
Zhao, C. et al. Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer. Adv. Mater. 35, 2211619 (2023).Article 
CAS 

Google Scholar 
Ruiz-Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19Fsolid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645–1654 (2020).Article 
CAS 
PubMed 

Google Scholar 
Li, G. et al. Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Shen, Y. et al. Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690 (2023).Article 
CAS 

Google Scholar 
Zhang, J. et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem. Int. Ed. 62, e202305221 (2023).Article 

Google Scholar 
Yang, M. F. et al. Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat. Sustain. 6, 1455–1464 (2023).Zhang, Y. et al. Improved fatigue behaviour of perovskite solar cells with an interfacial starch–polyiodide buffer layer. Nat. Photonics 17, 1066–1073 (2023).Wang, H. et al. Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiOx-based inverted perovskite solar cell. Nano Energy 111, 108363 (2023).Article 
CAS 

Google Scholar 
Ru, P. et al. High electron affinity enables fast hole extraction for efficient, flexible, inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).Article 
CAS 

Google Scholar 
Li, F. et al. Regulating surfacetermination for efficient innverted perovskite solar sells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).Article 
CAS 
PubMed 

Google Scholar 
Han, T. H. et al. Spontaneous hybrid cross-linked network induced by multifunctional copolymer toward mechanically resilient perovskite solar cells. Adv. Funct. Mater. 32, 2207142 (2022).Article 
CAS 

Google Scholar 
Wang, K. et al. Defect passivation in perovskite solar cells by cyano-based π-conjugated molecules for improved performance and stability. Adv. Funct. Mater. 30, 2002861 (2020).Article 
CAS 

Google Scholar 
Wang, M. H. et al. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule 6, 1032–1048 (2022).Article 
CAS 

Google Scholar 
Zhang, B. et al. A multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202213478 (2023).Article 
CAS 

Google Scholar 
Fu, Q. et al. Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett. 7, 1128–1136 (2022).Article 
CAS 

Google Scholar 
Krishna, A. et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 14, 5552–5562 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, K. et al. Liquid-state dithiocarbonate-based polymeric additives with monodispersity rendering perovskite solar cells with exceptionally high certified photocurrent and fill factor. Adv. Energy Mater. 13, 2203742 (2023).Article 
ADS 
CAS 

Google Scholar 
Chen, Z. et al. Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35, 2300513 (2023).Article 
CAS 

Google Scholar 
Cao, Q. et al. Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy Environ. Sci. 14, 5406–5415 (2021).Article 
CAS 

Google Scholar 
Chen, N. L. et al. An efficient trap passivator for perovskite solar cells: poly(propylene glycol) bis(2-aminopropyl ether). Nano Micro Lett. 12, 177 (2020).Article 
ADS 
CAS 

Google Scholar 
Cao, Q. et al. Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. 32, 2201036 (2022).Article 
CAS 

Google Scholar 
Yu, B. et al. Application of a new π-conjugated ladder-like polymer in enhancing the stability and efficiency of perovskite solar cells. J. Mater. Chem. A 8, 1417–1424 (2020).Article 
CAS 

Google Scholar 
Zhao, Y. P. et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 32, 1907769 (2020).Article 
CAS 

Google Scholar 
Li, M. et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H. et al. Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24%. Adv. Mater. 34, 2204366 (2022).Article 
CAS 

Google Scholar 
Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).Article 
ADS 
CAS 

Google Scholar 
Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Su, T.-S. et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980–19991 (2020).Article 
CAS 
PubMed 

Google Scholar 
Reif, B., Ashbrook, S. E., Emsley, L. & Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Prim. 1, 2 (2021).Article 
CAS 

Google Scholar 
Piveteau, L., Morad, V. & Kovalenko, M. V. Solid-state NMR. and NQR. spectroscopy of lead-halide perovskite materials. J. Am. Chem. Soc. 142, 19413–19437 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Franssen, W. M. J. & Kentgens, A. P. M. Solid–state NMR of hybrid halide perovskites. Solid State Nucl. Magn. Reson. 100, 36–44 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kubicki, D. J., Stranks, S. D., Grey, C. P. & Emsley, L. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat. Rev. Chem. 5, 624–645 (2021).Article 
CAS 
PubMed 

Google Scholar 
Akhavan Kazemi, M. A. et al. Molecular-level insight into correlation between surface defects and stability of methylammonium lead halide perovskite under controlled humidity. Small Methods 5, 2000834 (2021).Article 
CAS 

Google Scholar 
Alanazi, A. Q. et al. Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multinuclear and two-dimensional solid-state NMR. J. Am. Chem. Soc. 141, 17659–17669 (2019).Article 
CAS 
PubMed 

Google Scholar 
Mishra, A. et al. Dynamic nuclear polarization enables NMR of surface passivating agents on hybrid perovskite thin films. J. Am. Chem. Soc. 144, 15175–15184 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hope, M. A. et al. Nanoscale phase segregation in supramolecular π-templating for hybrid perovskite photovoltaics from NMR crystallography. J. Am. Chem. Soc. 143, 1529–1538 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).Article 
ADS 
CAS 

Google Scholar 
Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).Article 
ADS 

Google Scholar 
Liu, Z. et al. Grain regrowth and bifacial passivation for high-efficiency wide-bandgap perovskite solar cells. Adv. Energy Mater. 13, 2203230 (2023).Article 
CAS 

Google Scholar 
Xie, F. X. et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10, 1942–1949 (2017).Article 
CAS 

Google Scholar 
Jin, Z. X. et al. Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth. J. Energy Chem. 54, 414–421 (2021).Article 
CAS 

Google Scholar 
Gallet, T., Grabowski, D., Kirchartz, T. & Redinger, A. Fermi-level pinning in methylammonium lead iodide perovskites. Nanoscale 11, 16828–16836 (2019).Article 
CAS 
PubMed 

Google Scholar 
Leblebici, S. Y. et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1, 16093 (2016).Article 
ADS 
CAS 

Google Scholar 
Fu, G., Lee, D.-K., Ma, C. & Park, N.-G. Disulfidation interfacial engineering toward stable, lead-immobilizable perovskite solar cells. ACS Energy Lett. 8, 4563–4571 (2023).Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).Article 
CAS 

Google Scholar 
Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).Article 
ADS 
CAS 

Google Scholar 
Feenstra, R. M. Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Phys. Rev. B 50, 4561–4570 (1994).Article 
ADS 
CAS 

Google Scholar 
Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).Article 
CAS 

Google Scholar 
Marronnier, A. et al. Structural instabilities related to highly anharmonic phonons in halide perovskites. J. Phys. Chem. Lett. 8, 2659–2665 (2017).Article 
CAS 
PubMed 

Google Scholar 
Lanigan-Atkins, T. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 20, 977–983 (2021).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017).Article 
CAS 
PubMed 

Google Scholar 
Worhatch, R. J., Kim, H., Swainson, I. P., Yonkeu, A. L. & Billinge, S. J. L. Study of local structure in selected organic–inorganic perovskites in the Pm3̅m phase. Chem. Mater. 20, 1272–1277 (2008).Article 
CAS 

Google Scholar 
Laurita, G., Fabini, D. H., Stoumpos, C. C., Kanatzidis, M. G. & Seshadri, R. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chem. Sci. 8, 5628–5635 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kontos, A. G. et al. Dynamic disorder, band gap widening, and persistent near-IR photoluminescence up to at least 523 K in ASnI3 perovskites (A = Cs+, CH3NH3+ and NH2–CH═NH2+). J. Phys. Chem. C. 122, 26353–26361 (2018).Article 
CAS 

Google Scholar 
Mukhuti, K., Sinha, S., Sinha, S. & Bansal, B. Dissipation-induced symmetry breaking: Emphanitic transitions in lead- and tin-containing chalcogenides and halide perovskites. Appl. Phys. Lett. 118, 162111 (2021).Article 
ADS 
CAS 

Google Scholar 
Zhao, X.-G., Wang, Z., Malyi, O. I. & Zunger, A. Effect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide and halide perovskites. Mater. Today 49, 107–122 (2021).Article 

Google Scholar 
Gao, P. et al. Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Rep. Phys. Sci. 2, 100450 (2021).Article 
ADS 
CAS 

Google Scholar 
Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (2004).Article 
ADS 

Google Scholar 
Caprioglio, P. et al. On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).Article 

Google Scholar 
Li, J. et al. Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9, 308–315 (2024).Article 
ADS 
CAS 

Google Scholar 
Thiesbrummel, J. et al. Understanding and minimizing VOC losses in all-perovskite tandem photovoltaics. Adv. Energy Mater. 13, 2202674 (2023).Article 
CAS 

Google Scholar 
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with å 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Savenije, T. J., Guo, D., Caselli, V. M. & Hutter, E. M. Quantifying charge-carrier mobilities and recombination rates in metal halide perovskites from time-resolved microwave photoconductivity measurements. Adv. Energy Mater. 10, 1903788 (2020).Article 
CAS 

Google Scholar 
Hutter, E. M., Eperon, G. E., Stranks, S. D. & Savenije, T. J. Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhao, J., Caselli, V. M., Bus, M., Boshuizen, B. & Savenije, T. J. How deep hole traps affect the charge dynamics and collection in bare and bilayers of methylammonium lead bromide. ACS Appl. Mater. Interfaces 13, 16309–16316 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, D., Andaji Garmaroudi, Z., Abdi-Jalebi, M., Stranks, S. D. & Savenije, T. J. Reversible removal of intermixed shallow states by light soaking in multication mixed halide perovskite films. ACS Energy Lett. 4, 2360–2367 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, Y. et al. Understanding the role of cesium and rubidium additives in perovskite solar cells: trap states, charge transport, and recombination.Adv. Energy Mater. 8, 1703057 (2018).Article 
ADS 

Google Scholar 
Hutter, E. M. et al. Charge transfer from methylammonium lead iodide perovskite to organic transport materials: efficiencies, transfer rates, and interfacial recombination. Adv. Energy Mater. 7, 1602349 (2017).Article 

Google Scholar 

Hot Topics

Related Articles