Direct recycling of spent cathode material at ambient conditions via spontaneous lithiation

Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).Article 
CAS 

Google Scholar 
Wu, X., Ji, G., Wang, J., Zhou, G. & Liang, Z. Towards sustainable all solid‐state Li‐metal batteries: perspectives on battery technology and recycling processes. Adv. Mater. 35, 2301540 (2023).Article 
CAS 

Google Scholar 
Gao, H., Tran, D. & Chen, Z. Seeking direct cathode regeneration for more efficient lithium-ion battery recycling. Curr. Opin. Electrochem. 31, 100875 (2022).Article 
CAS 

Google Scholar 
Wu, J. et al. Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 54, 120–134 (2023).Article 
CAS 

Google Scholar 
Fan, E. et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120, 7020–7063 (2020).Article 
CAS 

Google Scholar 
Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).Article 
CAS 

Google Scholar 
Yang, T., Luo, D., Yu, A. & Chen, Z. Enabling future closed‐loop recycling of spent lithium‐ion batteries: direct cathode regeneration. Adv. Mater. 35, 2203218 (2023).Article 
CAS 

Google Scholar 
Jing, Q. et al. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method. ACS Sustain. Chem. Eng. 8, 17622–17628 (2020).Article 
CAS 

Google Scholar 
Wu, C. et al. Direct regeneration of spent Li-ion battery cathodes via chemical relithiation reaction. ACS Sustain. Chem. Eng. 9, 16384–16393 (2021).Article 
CAS 

Google Scholar 
Yu, X. et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater. 51, 54–62 (2022).Article 

Google Scholar 
Liu, Y. et al. Revealing lithium configuration in aged layered oxides for effective regeneration. ACS Appl. Mater. Interfaces 15, 9465–9474 (2023).Article 
CAS 

Google Scholar 
Ma, J. et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J. Am. Chem. Soc. 144, 20306–20314 (2022).Article 
CAS 

Google Scholar 
Qin, Z. et al. A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0. 3O2 cathode. Small 18, 2106719 (2022).Article 
CAS 

Google Scholar 
Yang, T. et al. An effective relithiation process for recycling lithium‐ion battery cathode materials. Adv. Sustain. Syst. 4, 1900088 (2020).Article 
CAS 

Google Scholar 
Zhang, L., Xu, Z. & He, Z. Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes. ACS Sustain. Chem. Eng. 8, 11596–11605 (2020).Article 
CAS 

Google Scholar 
Wang, T. et al. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10, 2001204 (2020).Article 
CAS 

Google Scholar 
Wang, J. et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl Sci. Rev. 9, nwac097 (2022).Article 
CAS 

Google Scholar 
Jia, K. et al. Topotactic transformation of surface structure enabling direct regeneration of spent lithium-ion battery cathodes. J. Am. Chem. Soc. 145, 7288–7300 (2023).Article 
CAS 

Google Scholar 
Guo, Y. et al. High reversibility of layered oxide cathode enabled by direct regeneration. Energy Storage Mater. 43, 348–357 (2021).Article 

Google Scholar 
Xiao, X. et al. Cathode regeneration and upcycling of spent LIBs: toward sustainability. Energy Environ. Sci. 16, 2856–2868 (2023).Article 
CAS 

Google Scholar 
Chen, X., Wang, X. & Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostruct. 28, 1048–1058 (2020).Article 
CAS 

Google Scholar 
Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi1–x–yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).Article 
CAS 

Google Scholar 
Wang, Y., Ren, D., Feng, X., Wang, L. & Ouyang, M. Thermal kinetics comparison of delithiated Li[NixCoyMn1–x–y]O2 cathodes. J. Power Sources 514, 230582 (2021).Article 
CAS 

Google Scholar 
Wang, J. et al. Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries. ACS Energy Lett. 7, 2816–2824 (2022).Article 
CAS 

Google Scholar 
Li, J. et al. Addressing cation mixing in layered structured cathodes for lithium-ion batteries: a critical review. Nano Mater. Sci. 5, 404–420 (2023).Article 
CAS 

Google Scholar 
Betz, J., Nowak, L., Winter, M., Placke, T. & Schmuch, R. An approach for pre-lithiation of Li1+xNi0.5Mn1.5O4 cathodes mitigating active lithium loss. J. Electrochem. Soc. 166, A3531 (2019).Article 
CAS 

Google Scholar 
Han, Y. et al. Regeneration of single-crystal LiNi0.5Co0.2Mn0.3O2 cathode materials from spent power lithium-ion batteries. J. Electrochem. Soc. 168, 040525 (2021).Article 
CAS 

Google Scholar 
Feng, Z. et al. Interfacial reviving of the degraded LiNi0.8Co0.1Mn0.1O2 cathode by LiPO3 repair strategy. Small 18, 2107346 (2022).Article 
CAS 

Google Scholar 
Song, H. et al. Recycling of lithium ion battery cathodes by targeted regeneration. Ionics 29, 3543–3547 (2023).Article 
CAS 

Google Scholar 
Meng, X. et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019).Article 
CAS 

Google Scholar 
Ma, T. et al. Molten salt-assisted regeneration and characterization of submicron-sized LiNi0.5Co0.2Mn0.3O2 crystals from spent lithium ion batteries. J. Alloys Compd. 848, 156591 (2020).Article 
CAS 

Google Scholar 
Yue, L.-P. et al. Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries. Ionics 26, 2757–2761 (2020).Article 
CAS 

Google Scholar 
Shi, Y., Zhang, M., Meng, Y. S. & Chen, Z. Ambient‐pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019).Article 

Google Scholar 
Jiang, G. et al. Synergistic approach of regeneration and Li3PO4 coating for spent Ni-rich cathode materials. Ionics 29, 1003–1011 (2023).Article 
CAS 

Google Scholar 
Jiang, G. et al. Toward the efficient direct regeneration of spent cathode materials through the effect of residual sodium ions analysis. J. Environ. Manag. 326, 116661 (2023).Article 
CAS 

Google Scholar 
Tang, X., Guo, Q., Zhou, M. & Zhong, S. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Chin. J. Chem. Eng. 40, 278–286 (2021).Article 
CAS 

Google Scholar 
Fan, M. et al. Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 14, 1461–1468 (2021).Article 
CAS 

Google Scholar 
Chen, X. et al. Comparison study on regeneration of spent ternary materials by molten salt solid-liquid method and traditional solid-solid method. J. Alloys Compd. 900, 163308 (2022).Article 
CAS 

Google Scholar 
Zhou, Q. et al. A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling. Sustain. Energy Fuels 5, 4981–4991 (2021).Article 
CAS 

Google Scholar 
Shang, M. & Peng, L. The regeneration and electrochemical performance study of NCM622 cathode materials. Ionics 27, 527–532 (2021).Article 
CAS 

Google Scholar 
Xing, L., Lin, S. & Yu, J. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries. Ind. Eng. Chem. Res. 60, 10303–10311 (2021).Article 
CAS 

Google Scholar 
Guan, M. et al. Regeneration of degraded cathode materials from spent LIBs via eutectic solutions. Ionics 28, 5469–5474 (2022).Article 
CAS 

Google Scholar 
Gupta, V. et al. Scalable direct recycling of cathode black mass from spent lithium‐ion batteries. Adv. Energy Mater. 13, 2203093 (2023).Article 
CAS 

Google Scholar 
Chi, Z. et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem. 23, 9099–9108 (2021).Article 
CAS 

Google Scholar 
Zhang, Y. et al. Cation doping method for the restoration of spent LiNi1/3Co1/3Mn1/3O2 cathode material properties. J. Alloys Compd. 957, 170262 (2023).Article 
CAS 

Google Scholar 
Xing, C. et al. Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance. ACS Nano 17, 3194–3203 (2023).Article 
CAS 

Google Scholar 
Jiang, G. et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustain. Chem. Eng. 8, 18138–18147 (2020).Article 
CAS 

Google Scholar 
Dong, H. et al. Single-crystal materials regenerated and modified by spent NCM523 as a high-voltage stable cycling cathode material. ACS Sustain. Chem. Eng. 10, 11587–11596 (2022).Article 
CAS 

Google Scholar 
Liu, L. et al. Surface growth and intergranular separation of polycrystalline particles for regeneration of stable single-crystal cathode materials. ACS Appl. Mater. Interfaces 14, 29886–29895 (2022).Article 
CAS 

Google Scholar 
Guan, M. et al. Regeneration for single crystal LiNi0.6Co0.1Mn0.3O2 from spent lithium ion batteries via an innovative approach. Ionics 29, 97–103 (2023).Article 
CAS 

Google Scholar 
Huang, C. et al. Preparation of single-crystal ternary cathode materials via recycling spent cathodes for high performance lithium-ion batteries. Nanoscale 14, 9724–9735 (2022).Article 
CAS 

Google Scholar 
Qin, Z. et al. A universal molten salt method for direct upcycling of spent Ni‐rich cathode towards single‐crystalline Li‐rich cathode. Angew. Chem. Int. Ed. 62, e202218672 (2023).Article 
CAS 

Google Scholar 
Fan, X. et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J. Hazard. Mater. 410, 124610 (2021).Article 
CAS 

Google Scholar 
Zhang, N., Xu, Z., Deng, W. & Wang, X. Recycling and upcycling spent LIB cathodes: a comprehensive review. Electrochem. Energy Rev. 5, 33 (2022).Article 
CAS 

Google Scholar 
Roy, J. J. et al. Green recycling methods to treat lithium‐ion batteries e‐waste: a circular approach to sustainability. Adv. Mater. 34, 2103346 (2022).Article 
CAS 

Google Scholar 
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).Article 
CAS 

Google Scholar 
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).Article 

Google Scholar 
Schipper, F. et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A 4, 16073–16084 (2016).Article 
CAS 

Google Scholar 
Harl, J., Schimka, L. & Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 81, 115126 (2010).Article 

Google Scholar 

Hot Topics

Related Articles