Neural-network-based molecular dynamics simulations reveal that proton transport in water is doubly gated by sequential hydrogen-bond exchange

Eigen, M. Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: elementary processes. Angew. Chem. Int. Ed. Engl. 3, 1–19 (1964).Article 

Google Scholar 
Zundel, G. & Metzger, H. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z. Phys. Chem. 58, 225–245 (1968).Article 
CAS 

Google Scholar 
Zundel, G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv. Chem. Phys. 111, 1–217 (1999).
Google Scholar 
Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH− ions in water. J. Phys. Chem. 99, 5749–5752 (1995).Article 
CAS 

Google Scholar 
Vuilleumier, R. & Borgis, D. An extended empirical valence bond model for describing proton mobility in water. Isr. J. Chem. 39, 457–467 (1999).Article 
CAS 

Google Scholar 
Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).Article 
CAS 

Google Scholar 
Marx, D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2006).Article 
CAS 
PubMed 

Google Scholar 
Markovitch, O. et al. Special pair dance and partner selection: elementary steps in proton transport in liquid water. J. Phys. Chem. B 112, 9456–9466 (2008).Article 
CAS 
PubMed 

Google Scholar 
Berkelbach, T. C. & Tuckerman, M. E. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Phys. Rev. Lett. 103, 238302 (2009).Article 
PubMed 

Google Scholar 
Hassanali, A., Giberti, F., Cuny, J., Kühne, T. D. & Parrinello, M. Proton transfer through the water gossamer. Proc. Natl Acad. Sci. USA 110, 13723–13728 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Napoli, J. A., Marsalek, O. & Markland, T. E. Decoding the spectroscopic features and time scales of aqueous proton defects. J. Chem. Phys. 148, 222833 (2018).Article 
PubMed 

Google Scholar 
Roy, S. et al. Resolving heterogeneous dynamics of excess protons in aqueous solution with rate theory. J. Phys. Chem. B 124, 5665–5675 (2020).Article 
CAS 
PubMed 

Google Scholar 
Lapid, H., Agmon, N., Petersen, M. K. & Voth, G. A. A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. J. Chem. Phys. 122, 14506 (2005).Article 
PubMed 

Google Scholar 
Thämer, M., De Marco, L., Ramasesha, K., Mandal, A. & Tokmakoff, A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350, 78–82 (2015).Article 
PubMed 

Google Scholar 
Dahms, F., Fingerhut, B. P., Nibbering, E. T. J., Pines, E. & Elsaesser, T. Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy. Science 357, 491–495 (2017).Article 
CAS 
PubMed 

Google Scholar 
Fournier, J. A., Carpenter, W. B., Lewis, N. H. C. & Tokmakoff, A. Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kundu, A. et al. Hydrated excess protons in acetonitrile/water mixtures: solvation species and ultrafast proton motions. J. Phys. Chem. Lett. 10, 2287–2294 (2019).Article 
CAS 
PubMed 

Google Scholar 
Luz, Z. & Meiboom, S. The activation energies of proton transfer reactions in water. J. Am. Chem. Soc. 86, 4768–4769 (1964).Article 
CAS 

Google Scholar 
Ando, K. & Hynes, J. T. HCl acid ionization in water: a theoretical molecular modeling. J. Mol. Liq. 64, 25–37 (1995).Article 
CAS 

Google Scholar 
Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997).Article 
CAS 
PubMed 

Google Scholar 
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).Article 
PubMed 

Google Scholar 
Rossi, M., Ceriotti, M. & Manolopoulos, D. E. How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys. 140, 234116 (2014).Article 
PubMed 

Google Scholar 
Sluyters, J. H. & Sluyters-Rehbach, M. Rotation of water molecules and its relation with the chemistry and physics of liquid water. J. Phys. Chem. B 114, 863–869 (2010).Article 
CAS 
PubMed 

Google Scholar 
Fournier, J. A. et al. Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. Science 344, 1009–1012 (2014).Article 
CAS 
PubMed 

Google Scholar 
Calio, P. B., Li, C. & Voth, G. A. Resolving the structural debate for the hydrated excess proton in water. J. Am. Chem. Soc. 143, 18672–18683 (2021).Article 
CAS 
PubMed 

Google Scholar 
Woutersen, S. & Bakker, H. J. Ultrafast vibrational and structural dynamics of the proton in liquid water. Phys. Rev. Lett. 96, 138305 (2006).Article 
PubMed 

Google Scholar 
Meiboom, S. Nuclear magnetic resonance study of the proton transfer in water. J. Chem. Phys. 34, 375 (1961).Article 
CAS 

Google Scholar 
Yuan, R. et al. Tracking aqueous proton transfer by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations. ACS Cent. Sci. 5, 1269–1277 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Calio, P. B., Li, C. & Voth, G. A. Molecular origins of the barriers to proton transport in acidic aqueous solutions. J. Phys. Chem. B 124, 8868–8876 (2020).Article 
CAS 
PubMed 

Google Scholar 
Tse, Y.-L. S., Knight, C. & Voth, G. A. An analysis of hydrated proton diffusion in ab initio molecular dynamics. J. Chem. Phys. 142, 014104 (2015).Article 
PubMed 

Google Scholar 
Chen, M. et al. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10, 413–419 (2018).Article 
PubMed 

Google Scholar 
Hammes-Schiffer, S. & Billeter, S. R. Hybrid approach for the dynamical simulation of proton and hydride transfer in solution and proteins. Int. Rev. Phys. Chem. 20, 591–616 (2001).Article 
CAS 

Google Scholar 
Daly, C. A. et al. Decomposition of the experimental Raman and infrared spectra of acidic water into proton, special pair, and counterion contributions. J. Phys. Chem. Lett. 8, 5246–5252 (2017).Article 
CAS 
PubMed 

Google Scholar 
Decornez, H., Drukker, K. & Hammes-Schiffer, S. Solvation and hydrogen-bonding effects on proton wires. J. Phys. Chem. A 103, 2891–2898 (1999).Article 
CAS 

Google Scholar 
Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Laage, D. & Hynes, J. T. A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).Article 
CAS 
PubMed 

Google Scholar 
Ekimova, M. et al. From local covalent bonding to extended electric field interactions in proton hydration. Angew. Chem. Int. Ed. Engl. 61, e202211066 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).Article 
CAS 

Google Scholar 
Biswas, R., Tse, Y. L., Tokmakoff, A. & Voth, G. A. Role of presolvation and anharmonicity in aqueous phase hydrated proton solvation and transport. J. Phys. Chem. B 120, 1793–1804 (2016).Article 
CAS 
PubMed 

Google Scholar 
Gomez, A., Piskulich, Z. A., Thompson, W. H. & Laage, D. Water diffusion proceeds via a hydrogen-bond jump exchange mechanism. J. Phys. Chem. Lett. 13, 4660–4666 (2022).Article 
CAS 
PubMed 

Google Scholar 
Carpenter, W. B., Lewis, N. H. C., Fournier, J. A. & Tokmakoff, A. Entropic barriers in the kinetics of aqueous proton transfer. J. Chem. Phys. 151, 034501 (2019).Article 
PubMed 

Google Scholar 
Arntsen, C., Chen, C., Calio, P. B., Li, C. & Voth, G. A. The hopping mechanism of the hydrated excess proton and its contribution to proton diffusion in water. J. Chem. Phys. 154, 194506 (2021).Article 
CAS 
PubMed 

Google Scholar 
Sluyters, J. H. & Sluyters-Rehbach, M. The mechanism of the hydrogen ion conduction in liquid light and heavy water derived from the temperature dependence of their limiting conductivities. J. Phys. Chem. B 114, 15582–15589 (2010).Article 
CAS 
PubMed 

Google Scholar 
Laage, D., Stirnemann, G., Sterpone, F., Rey, R. & Hynes, J. T. Reorientation and allied dynamics in water and aqueous solutions. Annu. Rev. Phys. Chem. 62, 395–416 (2011).Article 
CAS 
PubMed 

Google Scholar 
Mohammed, O. F., Pines, D., Dreyer, J., Pines, E. & Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 310, 83–86 (2005).Article 
CAS 
PubMed 

Google Scholar 
Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Muñoz-Santiburcio, D., Wittekindt, C. & Marx, D. Nanoconfinement effects on hydrated excess protons in layered materials. Nat. Commun. 4, 2349 (2013).Article 
PubMed 

Google Scholar 
Marsalek, O. & Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).Article 
CAS 
PubMed 

Google Scholar 
Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 50, 1047–1057 (1996).Article 
CAS 

Google Scholar 
Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).Article 
CAS 

Google Scholar 
Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Adv. Neural Inf. Process. Syst. 31, 4441–4451 (2018).
Google Scholar 
Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).Article 
CAS 

Google Scholar 
Ceriotti, M. & Manolopoulos, D. E. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. Phys. Rev. Lett. 109, 100604 (2012).Article 
PubMed 

Google Scholar 
Ceriotti, M., More, J. & Manolopoulos, D. E. i-PI: a Python interface for ab initio path integral molecular dynamics simulations. Comp. Phys. Commun. 185, 1019–1026 (2014).Article 
CAS 

Google Scholar 
Gomez, A., Thompson, W. H. & Laage, D. Proton transport in water is doubly gated by sequential hydrogen-bond exchange: Neural network potentials training data. Zenodo https://doi.org/10.5281/zenodo.11965260 (2024).Zhang, L. et al. Deep neural network for the dielectric response of insulators. Phys. Rev. B 102, 041121 (2020).Article 
CAS 

Google Scholar 
Iftimie, R. & Tuckerman, M. E. Decomposing total IR spectra of aqueous systems into solute and solvent contributions: a computational approach using maximally localized Wannier orbitals. J. Chem. Phys. 122, 214508 (2005).Article 
PubMed 

Google Scholar 
Colbert, D. T. & Miller, W. H. A novel discrete variable representation for quantum mechanical reactive scattering via the S‐matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992).Article 
CAS 

Google Scholar 
Laage, D. & Hynes, J. T. On the molecular mechanism of water reorientation. J. Phys. Chem. B 112, 14230–14242 (2008).Article 
CAS 
PubMed 

Google Scholar 
Piskulich, Z. A. & Thompson, W. H. On the temperature dependence of liquid structure. J. Chem. Phys. 152, 011102 (2020).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles