Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes

Choi, J. W. et al. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).Article 

Google Scholar 
Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).Article 

Google Scholar 
Albertus, P. et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).Article 

Google Scholar 
Obrovac, M. N. et al. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).Article 

Google Scholar 
He, Y. et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 16, 1113–1120 (2021).Article 

Google Scholar 
Sung, J. et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy 6, 1164–1175 (2021).Article 

Google Scholar 
Li, Y. et al. Growth of conformal graphene cages on micrometer-sized silicon particles as stable battery anodes. Nat. Energy 1, 1–9 (2016).
Google Scholar 
Jia, H. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11, 1474 (2020).Article 

Google Scholar 
Park, S.-H. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019).Article 

Google Scholar 
McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).Article 

Google Scholar 
Kim, N. et al. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 9, 921–933 (2023).Article 

Google Scholar 
Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).Article 

Google Scholar 
Yang, F. et al. Achieving high‐performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 11, 2003346 (2020).Article 

Google Scholar 
Jia, H. et al. High‐performance silicon anodes enabled by nonflammable localized high‐concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019).Article 

Google Scholar 
Li, X. et al. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutr. 2, 34 (2023).Article 

Google Scholar 
Philippe, B. et al. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries—a photoelectron spectroscopy study. Chem. Mater. 25, 394–404 (2013).Article 

Google Scholar 
MacFarlane, D. R. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 1–15 (2016).Article 

Google Scholar 
Watanabe, M. et al. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017).Article 

Google Scholar 
Jiang, S. et al. Viscosity of typical room-temperature ionic liquids: a critical review. J. Phys. Chem. Ref. Data 48, 033101 (2019).Article 

Google Scholar 
Piper, D. M. et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat. Commun. 6, 1–10 (2015).Article 

Google Scholar 
Mac Glashan, G. S. et al. Structure of the polymer electrolyte poly (ethylene oxide)6: LiAsF6. Nature 398, 792–794 (1999).Article 

Google Scholar 
Kärnä, M. et al. Preparation and characterization of new low-melting ammonium-based ionic liquids with ether functionality. J. Mol. Struct. 922, 64–76 (2009).Article 

Google Scholar 
Sato, T. et al. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 49, 3603–3611 (2004).Article 

Google Scholar 
Borodin, O. et al. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI− ionic liquids. J. Phys. Chem. B 110, 16879–16886 (2006).Article 

Google Scholar 
Bruce, P. G. et al. Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28, 918–922 (1988).Article 

Google Scholar 
Qiao, B. et al. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 140, 10932–10936 (2018).Article 

Google Scholar 
Ma, P. et al. Effect of building block connectivity and ion solvation on electrochemical stability and ionic conductivity in novel fluoroether electrolytes. ACS Cent. Sci. 7, 1232–1244 (2021).Article 

Google Scholar 
Martin, P. A. et al. Correlating intermolecular cross-relaxation rates with distances and coordination numbers in ionic liquids. J. Phys. Chem. Lett. 9, 7072–7078 (2018).Article 

Google Scholar 
Han, S.-D. et al. Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J. Phys. Chem. C. 119, 8492–8500 (2015).Article 

Google Scholar 
Zheng, J. et al. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of solid electrolyte interphase (SEI) on silicon anodes for lithium-ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014).Article 

Google Scholar 
Philippe, B. et al. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J. Am. Chem. Soc. 135, 9829–9842 (2013).Article 

Google Scholar 
Philippe, B. et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater. 24, 1107–1115 (2012).Article 

Google Scholar 
Egerton, R. F. et al. EELS in the TEM. J. Electron Spectr. Relat. Phenom. 143, 43–50 (2005).Article 

Google Scholar 
Danet, J. et al. Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. Phys. Chem. Chem. Phys. 12, 220–226 (2010).Article 

Google Scholar 
Li, A. M. et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat. Commun. 15, 1206 (2024).Article 

Google Scholar 
Boniface, M. et al. Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS. Nano Lett. 16, 7381–7388 (2016).Article 

Google Scholar 
Choi, N. S. et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161, 1254–1259 (2006).Article 

Google Scholar 
Park, S. et al. Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes. Chem. Sci. 14, 9996–10024 (2023).Article 

Google Scholar 
Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).Article 

Google Scholar 
Zhu, T. et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 8, 129–137 (2023).Article 

Google Scholar 
Choi, S. et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium-ion batteries. Science 357, 279–283 (2017).Article 

Google Scholar 
Lee, S. W. et al. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).Article 

Google Scholar 
Park, H. et al. Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature. J. Mater. Chem. A 3, 1325–1332 (2015).Article 

Google Scholar 
Wu, H. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012).Article 

Google Scholar 
Heist, A. et al. Electrochemical analysis of factors affecting the kinetic capabilities of an ionic liquid electrolyte. J. Electrochem. Soc. 166, A1677 (2019).Article 

Google Scholar 
Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).Article 

Google Scholar 
Kim, N. et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 8, 812 (2017).Article 

Google Scholar 
Han, J. G. et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. J. Power Sources 446, 227366 (2020).Article 

Google Scholar 

Hot Topics

Related Articles