3D MoS2/graphene oxide integrated composite as anode for high-performance sodium-ion batteries

Bruce Dunn, H. K. & Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 334, 928–935 (2011).Article 
ADS 
PubMed 

Google Scholar 
Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 27, 778–788 (2013).Article 

Google Scholar 
Zhang, C., Wei, Y.-L., Cao, P.-F. & Lin, M.-C. Energy storage system: Current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018).Article 

Google Scholar 
Tu, Y. et al. Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Res. 17, 2088–2110 (2023).Article 
ADS 

Google Scholar 
Mathiyalagan, K., Shin, D. & Lee, Y.-C. Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries. J. Energy Chem. 03, 40–57 (2024).Article 

Google Scholar 
Kong, L.-Y. et al. Layered oxide cathodes for sodium-ion batteries: Microstructure design, local chemistry and structural unit. Sci. China Chem. 01, 191–213 (2024).Article 

Google Scholar 
Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 8, 1703137 (2018).Article 

Google Scholar 
Deng, J., Luo, W.-B., Chou, S.-L., Liu, H.-K. & Dou, S.-X. Sodium-ion batteries: From academic research to practical commercialization. Adv. Energy Mater. 8, 1701428 (2018).Article 

Google Scholar 
Eftekhari, A. & Kim, D.-W. Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power Sources 395, 336–348 (2018).Article 
ADS 

Google Scholar 
Li, F. et al. Sodium-based batteries: From critical materials to battery systems. J. Mater. Chem. A 7, 9406–9431 (2019).Article 

Google Scholar 
Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).Article 

Google Scholar 
Sawicki, M. & Shaw, L. L. Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 5, 53129–53154 (2015).Article 
ADS 

Google Scholar 
Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).Article 

Google Scholar 
Bai, H. et al. Advances in sodium-ion batteries at low-temperature: Challenges and strategies. J. Energy Chem. 03, 518–539 (2024).Article 

Google Scholar 
Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 6, 2067–2081 (2013).Article 

Google Scholar 
Hwang, J. Y., Myung, S. T. & Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 46, 3529–3614 (2017).Article 
PubMed 

Google Scholar 
Raccichini, R., Varzi, A., Passerini, S. & Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015).Article 
ADS 
PubMed 

Google Scholar 
Wahid, M., Puthusseri, D., Gawli, Y., Sharma, N. & Ogale, S. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 11, 506–526 (2018).Article 
PubMed 

Google Scholar 
Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).Article 
PubMed 

Google Scholar 
Hou, H., Qiu, X., Wei, W., Zhang, Y. & Ji, X. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 201602898 (2017).Article 

Google Scholar 
Kim, D. Y. et al. Nano hard carbon anodes for sodium-ion batteries. Nanomaterials 9, 793–801 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Kumar, N. A. et al. Sodium ion storage in reduced graphene oxide. Electrochim. Acta 214, 319–325 (2016).Article 

Google Scholar 
Zhang, J. et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Sci. Rep. 7, 4886 (2017).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Senthil, C., Park, J. W., Shaji, N., Sim, G. S. & Lee, C. W. Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity. J. Energy Chem. 01, 286–295 (2022).Article 

Google Scholar 
Doeff, M. M., Cabana, J. & Shirpour, M. Titanate anodes for sodium ion batteries. J. Inorg. Organomet. Polym. Mater. 24, 5–14 (2013).Article 

Google Scholar 
Guo, S., Yi, J., Sun, Y. & Zhou, H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 9, 2978–3006 (2016).Article 

Google Scholar 
Mei, Y., Huang, Y. & Hu, X. Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 4, 12001–12013 (2016).Article 

Google Scholar 
Wu, L., Buchholz, D., Bresser, D., Gomes Chagas, L. & Passerini, S. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 251, 379–385 (2014).Article 
ADS 

Google Scholar 
Zhai, H., Xia, B. Y. & Park, H. S. Ti-based electrode materials for electrochemical sodium ion storage and removal. J. Mater. Chem. A 7, 22163–22188 (2019).Article 

Google Scholar 
Deng, J. et al. Graphene layer reinforcing mesoporous molybdenum disulfide foam as high-performance anode for sodium-ion battery. Mater. Today Energy 8, 151–156 (2018).Article 

Google Scholar 
Hu, Z., Liu, Q., Chou, S. L. & Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29, 201700606 (2017).Article 

Google Scholar 
Hu, Z. et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 126, 13008–13012 (2014).Article 
ADS 

Google Scholar 
Liu, Y. et al. WS2 nanowires as a high-performance anode for sodium-ion batteries. Chemistry 21, 11878–11884 (2015).Article 
PubMed 

Google Scholar 
Wang, T., Chen, S., Pang, H., Xue, H. & Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4, 1600289 (2017).Article 

Google Scholar 
Xiao, Y., Lee, S. H. & Sun, Y.-K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7, 201601329 (2017).Article 

Google Scholar 
Hasa, I., Verrelli, R. & Hassoun, J. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. Electrochim. Acta 173, 613–618 (2015).Article 

Google Scholar 
Jiang, Y. et al. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5, 60–66 (2014).Article 

Google Scholar 
Alcantara, M. J. R. & Lavela, P. Tirado, NiCo2O4 Spinel_First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Phys. Inorg. Chem. 14, 2847–2848 (2002).
Google Scholar 
Wang, Y. et al. Erratum: A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013).Article 
ADS 
PubMed 

Google Scholar 
Xiong, H., Slater, M. D., Balasubramanian, M., Johnson, C. S. & Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011).Article 

Google Scholar 
Banda, H., Damien, D., Nagarajan, K., Hariharan, M. & Shaijumon, M. M. A polyimide based all-organic sodium ion battery. J. Mater. Chem. A 3, 10453–10458 (2015).Article 

Google Scholar 
Zhang, Y. et al. A calcium organic salt/rGO composite with low solubility and high conductivity as a sustainable anode for sodium-ion batteries. ChemSusChem 12, 4160–4164 (2019).Article 
PubMed 

Google Scholar 
Wasalathilake, K. C., Li, H., Xu, L. & Yan, C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J. Energy Chem. 03, 91–107 (2020).Article 

Google Scholar 
Lin, X., Zhou, L., Huang, T. & Yu, A. Hierarchically porous honeycomb-like carbon as a lithium–oxygen electrode. J. Mater. Chem. A 1, 1239–1245 (2013).Article 

Google Scholar 
Daniela, D. V. K. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).Article 

Google Scholar 
Meng, X. et al. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 61, 611–616 (2019).Article 

Google Scholar 
Gołasa, K. et al. Resonant Raman scattering in MoS2—From bulk to monolayer. Solid State Commun. 197, 53–56 (2014).Article 
ADS 

Google Scholar 
Xie, X. et al. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6, 1502161 (2016).Article 

Google Scholar 
Chen, B. et al. Efficient reversible conversion between MoS2 and Mo/Na2 S enabled by graphene-supported single atom catalysts. Adv. Mater. 33, e2007090 (2021).Article 
PubMed 

Google Scholar 
Wu, X., Xie, X., Zhang, H. & Huang, K. J. Engineering stable and fast sodium diffusion route by constructing hierarchical MoS2 hollow spheres. J. Colloid Interface Sci. 595, 43–50 (2021).Article 
ADS 
PubMed 

Google Scholar 
Yu, H., Wang, Z., Ni, J. & Li, L. Freestanding nanosheets of 1T–2H hybrid MoS2 as electrodes for efficient sodium storage. J. Mater. Sci. Technol. 67, 237–242 (2021).Article 

Google Scholar 
Li, Y. et al. Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries. J. Phys. Chem. Solids 136, 109163 (2020).Article 

Google Scholar 
Lamuel David, R. B. & Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014).Article 
PubMed 

Google Scholar 
Wang, X., Hao, H., Liu, J., Huang, T. & Yu, A. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56, 4065–4069 (2011).Article 

Google Scholar 
Geng, X. et al. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 27, 1702998 (2017).Article 

Google Scholar 
Zheng, F. et al. 3D MoS2 foam integrated with carbon paper as binder-free anode for high performance sodium-ion batteries. J. Energy Chem. 2, 26–33 (2022).Article 

Google Scholar 
Tang, W. J. et al. Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries. J. Mater. Chem. A 6, 18318–18324 (2018).Article 
ADS 

Google Scholar 
Ni, Q. et al. Carbon nanofiber elastically confined nanoflowers: A highly efficient design for molybdenum disulfide-based flexible anodes toward fast sodium storage. ACS Appl. Mater. Interfaces 11, 5183–5192 (2019).Article 
PubMed 

Google Scholar 
Yang, H., Wang, M., Liu, X., Jiang, Y. & Yu, Y. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11, 3844–3853 (2018).Article 
ADS 

Google Scholar 
Choi, S. H., Ko, Y. N., Lee, J. K. & Kang, Y. C. 3D MoS2–graphene microspheres consisting of multiple anospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25, 01402428 (2015).
Google Scholar 
Anwer, S. et al. Nature-inspired, graphene-wrapped 3D MoS2 ultrathin microflower architecture as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 22323–22331 (2019).Article 
PubMed 

Google Scholar 
Zhu, M. et al. 3D reduced graphene oxide wrapped MoS2@Sb2S3 heterostructures for high performance sodium-ion batteries. Appl. Surf. Sci. 624, 157106 (2023).Article 

Google Scholar 
Chen, C. et al. Chemical vapor deposited MoS2/electrospun carbon nanofiber composite as anode material for high-performance sodium-ion batteries. Electrochim. Acta 222, 1751–1760 (2016).Article 

Google Scholar 
Huang, B., Liu, S., Li, H., Zhuang, S. & Fang, D. Comparative study and electrochemical properties of LiFePO4F synthesized by different routes. Bull. Korean Chem. Soc. 33, 2315–2319 (2012).Article 

Google Scholar 
John Wang, J. P., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).Article 

Google Scholar 

Hot Topics

Related Articles