Microstructurally resolved electrochemical evolution of mechanical- and irradiation-induced damage in nuclear alloys

Cattant, F., Crusset, D. & Féron, D. Corrosion issues in nuclear industry today. Mater. Today 11, 32–37 (2008).Article 
CAS 

Google Scholar 
Gussev, M. N. & Leonard, K. J. In situ SEM-EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel. J. Nucl. Mater. 517, 45–56 (2019).Article 
CAS 

Google Scholar 
Gussev, M. N., Field, K. G. & Busby, J. T. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 Dpa and deformed to 0.8% strain. J. Nucl. Mater. 446, 187–192 (2014).Article 
CAS 

Google Scholar 
Chen, X., Gussev, M., Balonis, M., Bauchy, M. & Sant, G. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steels. Mater. Des. 2021, 109614.Matsubara, N. et al. Research programs on SCC of cold-worked stainless steel in Japanese PWR N.P.P. France: N. p., 2011. Web.Takakura, K., Nakata, K., Ando, M., Fujimoto, K. & Wachi, E. Lifetime evaluation for IASCC initiation of cold worked 316 stainless steel’s BFB in PWR primary water. Canada: N. p., 2007. Web.Was, G. S. & Andresen, P. L. Irradiation-assisted stress-corrosion cracking in austenitic alloys. JOM 44, 8–13 (1992).Article 
CAS 

Google Scholar 
Shen, Y. F., Li, X. X., Sun, X., Wang, Y. D. & Zuo, L. Twinning and martensite in a 304 austenitic stainless steel. Mater. Sci. Eng. A 552, 514–522 (2012).Article 
CAS 

Google Scholar 
Liu, T., Reese, E. R., Ghamarian, I. & Marquis, E. A. Atom probe tomography characterization of ion and neutron irradiated alloy 800H. J. Nucl. Mater. 543, 152598 (2021).Article 
CAS 

Google Scholar 
Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010).Article 

Google Scholar 
McCafferty, E. Introduction to Corrosion Science (Springer, 2010).Andresen, P. L. Stress corrosion cracking of current structural materials in commercial nuclear power plants. Corrosion 69, 1024–1038 (2013).Article 
CAS 

Google Scholar 
Suter, T. & Böhni, H. A new microelectrochemical method to study pit initiation on stainless steels. Electrochim. Acta 42, 3275–3280 (1997).Article 
CAS 

Google Scholar 
Grandy, L. & Mauzeroll, J. Localising the electrochemistry of corrosion fatigue. Curr. Opin. Colloid Interface Sci. 61, 101628 (2022).Article 
CAS 

Google Scholar 
Bard, A. J. & Mirkin, M. V. Scanning Electrochemical Microscopy (CRC Press, 2012).Gateman, S. M. et al. Using macro and micro electrochemical methods to understand the corrosion behavior of stainless steel thermal spray coatings. Npj Mater. Degrad. 3, 1–9 (2019).Article 
CAS 

Google Scholar 
Yule, L. C. et al. Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel. Electrochim. Acta 332, 135267 (2020).Article 
CAS 

Google Scholar 
Yule, L. C. et al. Nanoscale active sites for the hydrogen evolution reaction on low carbon steel. J. Phys. Chem. C 123, 24146–24155 (2019).Article 
CAS 

Google Scholar 
Sidane, D. et al. Electrochemical characterization of a mechanically stressed passive layer. Electrochem. Commun. 13, 1361–1364 (2011).Article 
CAS 

Google Scholar 
Sun, P., Liu, Z., Yu, H. & Mirkin, M. V. Effect of mechanical stress on the kinetics of heterogeneous electron transfer. Langmuir 24, 9941–9944 (2008).Article 
CAS 
PubMed 

Google Scholar 
Yazdanpanah, A. et al. Revealing the stress corrosion cracking initiation mechanism of Alloy 718 prepared by laser powder bed fusion assessed by microcapillary method. Corros. Sci. 208, 110642 (2022).Article 
CAS 

Google Scholar 
Yazdanpanah, A., Pezzato, L. & Dabalà, M. Stress corrosion cracking of AISI 304 under chromium variation within the standard limits: failure analysis implementing microcapillary method. Eng. Fail. Anal. 142, 106797 (2022).Article 
CAS 

Google Scholar 
Was, G. S. Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, 2016).Deng, P. et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water. Corros. Sci. 127, 91–100 (2017).Article 
CAS 

Google Scholar 
Birtcher, R. C., Kirk, M. A., Furuya, K., Lumpkin, G. R. & Ruault, M. O. In situ transmission electron microscopy investigation. Radiat. Eff. J. Mater. Res. 20, 1654–1683 (2005).Article 
CAS 

Google Scholar 
Kaoumi, D. & Liu, J. Deformation induced martensitic transformation in 304 austenitic stainless steel: in-situ vs. ex-situ transmission electron microscopy characterization. Mater. Sci. Eng. A 715, 73–82 (2018).Article 
CAS 

Google Scholar 
Hirst, Charles A. et al. Revealing hidden defects through stored energy measurements of radiation damage. Sci. Adv. 8, eabn2733 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
El-Tahawy, M. et al. Stored energy in ultrafine-grained 316l stainless steel processed by high-pressure torsion. J. Mater. Res. Technol. 6, 339–347 (2017).Article 
CAS 

Google Scholar 
Naghizadeh, M. & Mirzadeh, H. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall. Mater. Trans. A 47, 4210–4216 (2016).Article 
CAS 

Google Scholar 
Wang, H. et al. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation. Mater. Sci. Eng. A 690, 16–31 (2017).Article 
CAS 

Google Scholar 
Sohrabi, M. J., Naghizadeh, M. & Mirzadeh, H. Deformation-induced martensite in austenitic stainless steels: a review. Arch. Civ. Mech. Eng. 20, 1–24 (2020).Article 

Google Scholar 
Hertzberg, R. W., Vinci, R. P. & Hertzberg, J. L. Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, 2020).Czerwinski, F. et al. The edge-cracking of AISI 304 stainless steel during hot-rolling. J. Mater. Sci. 34, 4727–4735 (1999).Article 
CAS 

Google Scholar 
Xu, Y., Jing, H., Xu, L., Han, Y. & Zhao, L. Effect of δ-ferrite on stress corrosion cracking of CF8A austenitic stainless steels in a simulated pressurised water reactor environment. J. Mater. Res. Technol. 8, 6420–6426 (2019).Article 
CAS 

Google Scholar 
Yi, Y., Cho, P., Al Zaabi, A., Addad, Y. & Jang, C. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution. Corros. Sci. 74, 92–97 (2013).Article 
CAS 

Google Scholar 
Bakhsheshi-Rad, H. R. et al. Cold deformation and heat treatment influence on the microstructures and corrosion behavior of AISI 304 stainless steel. Can. Metall. Q. 52, 449–457 (2013).Article 
CAS 

Google Scholar 
Tao, H., Ding, M., Shen, C. & Zhang, L. Inconsistent evolvement of micro-structures and corrosion behaviors in cold/warm deformed austenitic stainless steel. Mater. Res. Express 9, 096520 (2022).Article 
CAS 

Google Scholar 
Gussev, M. N., Busby, J. T., Byun, T. S. & Parish, C. M. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations. Mater. Sci. Eng. A 588, 299–307 (2013).Article 
CAS 

Google Scholar 
Raiman, S. S., Bartels, D. M. & Was, G. S. Radiolysis driven changes to oxide stability during irradiation-corrosion of 316L stainless steel in high temperature water. J. Nucl. Mater. 493, 40–52 (2017).Article 
CAS 

Google Scholar 
Lozano-Perez, S. et al. Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Mater. 57, 5361–5381 (2009).Article 
CAS 

Google Scholar 
Deng, P., Peng, Q., Han, E.-H. & Ke, W. Effect of the amount of cold work on corrosion of type 304 nuclear grade stainless steel in high-temperature water. Corrosion 73, 1237–1249 (2017).Article 
CAS 

Google Scholar 
Wenman, M. R., Trethewey, K. R., Jarman, S. E. & Chard-Tuckey, P. R. A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel. Acta Mater. 56, 4125–4136 (2008).Article 
CAS 

Google Scholar 
Hamilton, M. L. et al. Mechanical properties and fracture behavior of 20% cold-worked 316 stainless steel irradiated to very high neutron exposures. Influence of Radiation on Material Properties: 13th International Symposium (Part II). (ASTM International, 1987).Cui, T. et al. Effects of composition and microstructure on oxidation and stress corrosion cracking susceptibility of stainless steel claddings in hydrogenated PWR. Prim. Water J. Nucl. Mater. 553, 153057 (2021).Article 
CAS 

Google Scholar 
Taller, S. et al. Multiple ion beam irradiation for the study of radiation damage in materials. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. 412, 1–10 (2017).Article 
CAS 

Google Scholar 
Was, G. S., Farkas, D. & Robertson, I. M. Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation. Curr. Opin. Solid State Mater. Sci. 16, 134–142 (2012).Article 
CAS 

Google Scholar 
Johnson, D. C., Kuhr, B., Farkas, D. & Was, G. S. Quantitative linkage between the stress at dislocation channel–grain boundary interaction sites and irradiation assisted stress corrosion crack initiation. Acta Mater. 170, 166–175 (2019).Article 
CAS 

Google Scholar 
Chimi, Y. et al. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons. J. Nucl. Mater. 475, 71–80 (2016).Article 
CAS 

Google Scholar 
Deng, P., Peng, Q., Han, E.-H., Ke, W. & Sun, C. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water. J. Mater. Sci. Technol. 65, 61–71 (2021).Article 
CAS 

Google Scholar 
Gussev, M. N., Howard, R. H., Terrani, K. A. & Field, K. G. Sub-size tensile specimen design for in-reactor irradiation and post-irradiation testing. Nucl. Eng. Des. 320, 298–308 (2017).Article 
CAS 

Google Scholar 
Gussev, M. et al. Role of scale factor during tensile testing of small specimens. Small Specimen Test Techniques: 6th Volume. (ASTM International, 2015).Ziegler, J. F. SRIM-2003. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. 219, 1027–1036 (2004).Article 

Google Scholar 
Fruzzetti, K. Pressurized Water Reactor Primary Water Chemistry Guidelines Revision 6 (EPRI, 2007).Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).Article 

Google Scholar 

Hot Topics

Related Articles