Atomically dispersed ruthenium hydride on beta zeolite as catalysts for the isomerization of muconates

Vercammen, J. et al. Shape-selective C–H activation of aromatics to biarylic compounds using molecular palladium in zeolites. Nat. Catal. 3, 1002–1009 (2020).Article 
CAS 

Google Scholar 
Lange, J.-P. Performance metrics for sustainable catalysis in industry. Nat. Catal. 4, 186–192 (2021).Article 
CAS 

Google Scholar 
Brandi, F., Khalil, I., Antonietti, M. & Al-Naji, M. Continuous-flow production of isosorbide from aqueous-cellulosic derivable feed over sustainable heterogeneous catalysts. ACS Sustain. Chem. Eng. 9, 927–935 (2021).Article 
CAS 

Google Scholar 
Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E. & Sels, B. F. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ. Sci. 6, 1415–1442 (2013).Article 
CAS 

Google Scholar 
te Molder, T. D. J., Kersten, S. R. A., Lange, J.-P. & Ruiz, M. P. From woody biomass to ethylene glycol: inorganics removal boosts the yield. Ind. Eng. Chem. Res. 60, 13515–13522 (2021).Article 

Google Scholar 
Van Praet, S., Preegel, G., Rammal, F. & Sels, B. F. One-pot consecutive reductive amination synthesis of pharmaceuticals: from biobased glycolaldehyde to hydroxychloroquine. ACS Sustain. Chem. Eng. 10, 6503–6508 (2022).Article 

Google Scholar 
Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sun, Z. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92 (2018).Article 
CAS 

Google Scholar 
Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).Article 
CAS 
PubMed 

Google Scholar 
Dusselier, M., Mascal, M. & Sels, B. F. in Selective Catalysis for Renewable Feedstocks and Chemicals (ed. Nicholas, K.) 1–40 (Springer Cham, 2014).Lange, J.-P. Towards circular carbo-chemicals – the metamorphosis of petrochemicals. Energy Environ. Sci. 14, 4358–4376 (2021).Article 
CAS 

Google Scholar 
Gao, C., Ma, C. & Xu, P. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 29, 930–939 (2011).Article 
CAS 
PubMed 

Google Scholar 
Araji, N. et al. Synthesis of maleic and fumaric acids from furfural in the presence of betaine hydrochloride and hydrogen peroxide. Green Chem. 19, 98–101 (2017).Article 
CAS 

Google Scholar 
Yu, Q. et al. A sustainable system for maleic acid synthesis from biomass-derived sugar. J. Chem. Technol. Biotechnol. 95, 751–757 (2020).Article 
CAS 

Google Scholar 
Kang, S., Fu, J. & Zhang, G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 94, 340–362 (2018).Article 
CAS 

Google Scholar 
Xu, W.-P. et al. Conversion of levulinic acid to valuable chemicals: a review. J. Chem. Technol. Biotechnol. 96, 3009–3024 (2021).Article 
CAS 

Google Scholar 
Schwartz, T. J., Shanks, B. H. & Dumesic, J. A. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr. Opin. Biotechnol. 38, 54–62 (2016).Article 
CAS 
PubMed 

Google Scholar 
Shanks, B. H. & Keeling, P. L. Bioprivileged molecules: creating value from biomass. Green Chem. 19, 3177–3185 (2017).Article 
CAS 

Google Scholar 
Shanks, B. H. & Broadbelt, L. J. A robust strategy for sustainable organic chemicals utilizing bioprivileged molecules. ChemSusChem 12, 2970–2975 (2019).Article 
CAS 
PubMed 

Google Scholar 
Khalil, I., Quintens, G., Junkers, T. & Dusselier, M. Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chem. 22, 1517–1541 (2020).Article 
CAS 

Google Scholar 
Briou, B., Améduri, B. & Boutevin, B. Trends in the Diels–Alder reaction in polymer chemistry. Chem. Soc. Rev. 50, 11055–11097 (2021).Article 
CAS 
PubMed 

Google Scholar 
Maniar, D. et al. Enzymatic synthesis of muconic acid-based polymers: trans, trans-dimethyl muconate and trans, β-dimethyl hydromuconate. Polymers 13, 2498 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhang, H., Jiang, H., Zhang, Y., Zhang, N. & Xiong, R. Ferroelectric lithography in single‐component organic enantiomorphic ferroelectrics. Angew. Chem. Int. Ed. 61, e202200135 (2022).Article 
CAS 

Google Scholar 
Carter, P. et al. Bioenabled platform to access polyamides with built-in target properties. J. Am. Chem. Soc. 22, 9548–9553 (2022).Article 

Google Scholar 
He, J. et al. Zirconium phosphate supported copper catalyst for selective oxidation of phenol to cis, cis-muconic acid. Appl. Catal. A 664, 119351 (2023).Article 
CAS 

Google Scholar 
Klein, B. C. et al. Economics and global warming potential of a commercial-scale delignifying biorefinery based on co-solvent enhanced lignocellulosic fractionation to produce alcohols, sustainable aviation fuels, and co-products from biomass. Energy Environ. Sci. 17, 1202–1215 (2024).Article 
CAS 

Google Scholar 
Ling, C. et al. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat. Commun. 13, 4925 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shiramizu, M. & Toste, F. D. Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration. Angew. Chem. Int. Ed. 52, 12905–12909 (2013).Article 
CAS 

Google Scholar 
Saraçi, E., Wang, L., Theopold, K. H. & Lobo, R. F. Bioderived muconates by cross‐metathesis and their conversion into terephthalates. ChemSusChem 11, 773–780 (2018).Article 
PubMed 

Google Scholar 
Quintens, G., Vrijsen, J., Adriaensens, P., Vanderzande, D. & Junkers, T. Muconic acid esters as bio-based acrylate mimics. Polym. Chem. 10, 5555–5563 (2019).Article 
CAS 

Google Scholar 
Carraher, J. M., Pfennig, T., Rao, R. G., Shanks, B. H. & Tessonnier, J. P. cis,cis-Muconic acid isomerization and catalytic conversion to biobased cyclic-C6-1,4-diacid monomers. Green Chem. 19, 3042–3050 (2017).Article 
CAS 

Google Scholar 
Lu, R. et al. Production of diethyl terephthalate from biomass-derived muconic acid. Angew. Chem. Int. Ed. 55, 249–253 (2016).Article 
CAS 

Google Scholar 
Rammal, F., Gaumont, A. C. & Lakhdar, S. Metal-free visible-light-mediated aromatization of 1,2-dihydronaphthalenes. Eur. J. Org. Chem. 2020, 1482–1485 (2020).Article 
CAS 

Google Scholar 
Carraher, J. M. et al. Solvent-driven isomerization of cis,cis-muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers. Green Chem. 22, 6444–6454 (2020).Article 
CAS 

Google Scholar 
Gopalakrishnan, D. K., Bhardwaj, S., Kumar, S., Karmakar, T. & Vaitla, J. Carbene-mediated stereoselective olefination of vinyl sulfoxonium ylides with diazo compounds and acetals. Chem. Commun. 60, 3846–3849 (2024).Article 
CAS 

Google Scholar 
Grundmann, C. Zur kenntnis der oxydation von phenolen mit peressigsäure. Ber. Dtsch. Chem. Ges. 69, 1755–1757 (1936).Article 

Google Scholar 
Settle, A. E. et al. Iodine-catalyzed Isomerization of dimethyl muconate. ChemSusChem 11, 1768–1780 (2018).Article 
CAS 
PubMed 

Google Scholar 
Frost, J. W., Miermont, A., Schweitzer, D. & Bui, V. Preparation of trans, trans muconic acid and trans, trans muconates. US patent US0314243 A1 (2010).Bui, V., MacRae, D. & Schweitzer, D. Methods for producing isomers of muconic acid and muconate salts. US patent US0030215 (2013).Tessonnier, J. P., Carraher, J. M., Pfennig, T. & Shanks, B. Isomerization of muconic acid. US patent US9957218 B2 (2018).Khalil, I. et al. Solvent-driven isomerization of muconates in DMSO: reaction mechanism and process sustainability. Green Chem. 26, 5852–5861 (2024).Article 
CAS 

Google Scholar 
Peeters, E. et al. Tandem reduction–reoxidation augments the catalytic activity of Sn-beta zeolites by redispersion and respeciation of SnO2 clusters. Chem. Mater. 33, 9366–9381 (2021).Article 
CAS 

Google Scholar 
Kerstens, D. et al. Fast and selective solvent-free branching of unsaturated fatty acids with hierarchical ZSM-5. ACS Sustain. Chem. Eng. 9, 4357–4362 (2021).Article 
CAS 

Google Scholar 
Shah, M. A. et al. Catalytic amination of lactic acid using Ru–zeolites. Dalton Trans. 51, 10773–10778 (2022).Article 
CAS 
PubMed 

Google Scholar 
Philippaerts, A. et al. Design of Ru–zeolites for hydrogen-free production of conjugated linoleic acids. ChemSusChem 4, 757–767 (2011).Article 
CAS 
PubMed 

Google Scholar 
Yue, C. J., Liu, Y. & He, R. Olefins isomerization by hydride-complexes of ruthenium. J. Mol. Catal. Chem. 259, 17–23 (2006).Article 
CAS 

Google Scholar 
Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).Article 
CAS 

Google Scholar 
Ge, L. et al. Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage. Appl. Catal. B 319, 121958 (2022).Article 
CAS 

Google Scholar 
Matthiesen, J. E., Carraher, J. M., Vasiliu, M., Dixon, D. A. & Tessonnier, J. P. Electrochemical conversion of muconic acid to biobased diacid monomers. ACS Sustain. Chem. Eng. 4, 3575–3585 (2016).Article 
CAS 

Google Scholar 
Qiu, J.-Z. et al. Pure siliceous zeolite-supported Ru single-atom active sites for ammonia synthesis. Chem. Mater. 31, 9413–9421 (2019).Article 
CAS 

Google Scholar 
Tekin, K., Hao, N., Karagoz, S. & Ragauskas, A. J. Ethanol: a promising green solvent for the deconstruction of lignocellulose. ChemSusChem 11, 3559–3575 (2018).Article 
CAS 
PubMed 

Google Scholar 
Yang, H. et al. Isolated single‐atom ruthenium anchored on beta zeolite as an efficient heterogeneous catalyst for styrene epoxidation. ChemNanoMat 6, 1647–1651 (2020).Article 
CAS 

Google Scholar 
Sun, R. et al. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ. Sci. 14, 1247–1285 (2021).Article 
CAS 

Google Scholar 
Ghoreishian, S. M., Shariati, K., Huh, Y. S. & Lauterbach, J. Recent advances in ammonia synthesis over ruthenium single-atom-embedded catalysts: a focused review. Chem. Eng. J. 467, 143533 (2023).Article 
CAS 

Google Scholar 
Mon, M. et al. Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope. ACS Catal. 8, 10401–10406 (2018).Article 
CAS 

Google Scholar 
Wang, D. & Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 115, 6621–6686 (2015).Article 
CAS 
PubMed 

Google Scholar 
Capeletti, M. R., Balzano, L., de la Puente, G., Laborde, M. & Sedran, U. Synthesis of acetal (1,1-diethoxyethane) from ethanol and acetaldehyde over acidic catalysts. Appl. Catal. A 198, L1–L4 (2000).Article 
CAS 

Google Scholar 
Hao, W. et al. Ru-catalyzed enantioselective hydrogenation of 2-pyridyl-substituted alkenes and substrate-mediated H/D exchange. ACS Catal. 12, 1150–1160 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kita, Y., Kuwabara, M., Yamadera, S., Kamata, K. & Hara, M. Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst. Chem. Sci. 11, 9884–9890 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wachs, I. E. & Bañares, M. A. (eds) Springer Handbook of Advanced Catalyst Characterization (Springer Cham, 2023).Wang, X. & Andrews, L. Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes. J. Phys. Chem. A 113, 551–563 (2009).Article 
CAS 
PubMed 

Google Scholar 
Settle, A. E. et al. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chem. 19, 3468–3492 (2017).Article 
CAS 

Google Scholar 
Shang, Y., Xu, X., Gao, B., Wang, S. & Duan, X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50, 5281–5322 (2021).Article 
CAS 
PubMed 

Google Scholar 
Devos, J. et al. Engineering low-temperature ozone activation of zeolites: process specifics, possible mechanisms and hybrid activation methods. Chem. Eng. J. 431, 133862 (2022).Article 
CAS 

Google Scholar 
Zavala‐Sanchez, L., Khalil, I., Oliviero, L., Paul, J. & Maugé, F. Structure and quantification of edge sites of WS2/Al2O3 catalysts coupling IR/CO spectroscopy and DFT calculations. ChemCatChem 12, 2066–2076 (2020).Article 

Google Scholar 
Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993).Article 
CAS 

Google Scholar 
Devos, J., Robijns, S., Van Goethem, C., Khalil, I. & Dusselier, M. Interzeolite conversion and the role of aluminum: toward generic principles of acid site genesis and distributions in ZSM-5 and SSZ-13. Chem. Mater. 33, 2516–2531 (2021).Article 
CAS 

Google Scholar 
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).Article 
CAS 
PubMed 

Google Scholar 
te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).Article 

Google Scholar 
Martini, A. et al. PyFitIt: the software for quantitative analysis of XANES spectra using machine-learning algorithms. Comput. Phys. Commun. 250, 107064 (2020).Article 
CAS 

Google Scholar 

Hot Topics

Related Articles