Near-infrared excitation Raman spectroscopy of colored fabric contaminated with body fluids

Saferstein, R. Hairs, fibers, and paint. In Criminalistics: An Introduction to Forensic Science, 5th edn, 202–242 (Schuster, P.-H.-S. eds) (1995).Robertson, J., Roux, C. & Wiggins, K. G. Forensic Examination of Fibres (CRC Press, Boca Raton, 2017).
Google Scholar 
Bueno, J. & Lednev, I. K. Attenuated total reflectance-FT-IR imaging for rapid and automated detection of gunshot residue. Anal. Chem. 86(7), 3389–3396 (2014).Article 
PubMed 

Google Scholar 
Bueno, J., Sikirzhytski, V. & Lednev, I. K. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation. Anal. Chem. 84(10), 4334–4339 (2012).Article 
PubMed 

Google Scholar 
Edwards, H. G. M., Farwell, D. W. & Williams, A. C. FT-Raman spectrum of cotton: A polymeric biomolecular analysis. Spectrochim. Acta A Mol. Spectrosc. 50(4), 807–811 (1994).Article 
ADS 

Google Scholar 
Hager, E., Farber, C. & Kurouski, D. Forensic identification of urine on cotton and polyester fabric with a hand-held Raman spectrometer. Forensic Chem. 9, 44–49 (2018).Article 

Google Scholar 
Weber, A. et al. Innovative vibrational spectroscopy research for forensic application. Anal. Chem. 95(1), 167–205. https://doi.org/10.1021/acs.analchem.2c05094 (2023).Article 
PubMed 

Google Scholar 
Khandasammy, S. R. et al. Bloodstains, paintings, and drugs: Raman spectroscopy applications in forensic science. Forensic Chem. 8, 111–133 (2018).Article 

Google Scholar 
Biermann, T. Blocks of colour IV: The evidential value of blue and red cotton fibres. Sci. Justice 47(2), 68–87 (2007).Article 
PubMed 

Google Scholar 
Macrae, R., Dudley, R. & Smalldon, K. The characterization of dyestuffs on wool fibers with special reference to microspectrophotometry. J. Forensic Sci. 24(1), 117–129 (1979).Article 

Google Scholar 
Grieve, M. C., Dunlop, J. & Haddock, P. An investigation of known blue, red, and black dyes used in the coloration of cotton fibers. J. Forensic Sci. 35(2), 301–315 (1990).Article 

Google Scholar 
Casadio, F., Leona, M., Lombardi, J. R. & Van Duyne, R. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem. Res. 43(6), 782–791. https://doi.org/10.1021/ar100019q (2010).Article 
PubMed 

Google Scholar 
Nacci, T., Sabatini, F., Cirrincione, C., Degano, I. & Colombini, M. P. Characterization of textile fibers by means of EGA-MS and Py-GC/MS. J. Anal. Appl. Pyrolysis 165, 105570 (2022).Article 

Google Scholar 
Luber, C. K., Doty, K. C., Bueno, J., Halamkova, L., & Lednev, I. K. Vibrational spectroscopy: Recent developments to revolutionize forensic science. Anal. Chem. (2014).Cano-Trujillo, C., García-Ruiz, C., Ortega-Ojeda, F. E., Romolo, F. & Montalvo, G. Forensic analysis of biological fluid stains on substrates by spectroscopic approaches and chemometrics: A review. Anal. Chim. Acta 1282, 341841. https://doi.org/10.1016/j.aca.2023.341841 (2023).Article 
PubMed 

Google Scholar 
Zapata, F., Ortega-Ojeda, F. E. & García-Ruiz, C. Forensic examination of textile fibres using Raman imaging and multivariate analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 268, 120695. https://doi.org/10.1016/j.saa.2021.120695 (2022).Article 

Google Scholar 
Virkler, K. & Lednev, I. K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal. Bioanal. Chem. 396(1), 525–534 (2009).Article 
PubMed 

Google Scholar 
Virkler, K. & Lednev, I. K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 188(1–3), 1–17 (2009).Article 
PubMed 

Google Scholar 
McLaughlin, G., Doty, K. C. & Lednev, I. K. Discrimination of human and animal blood traces via Raman spectroscopy. Forensic Sci. Int. 238, 91–95 (2014).Article 
PubMed 

Google Scholar 
Sikirzhytskaya, A., Sikirzhytski, V. & Lednev, I. K. Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood. J. Biophoton. 7(12), 59–67 (2012).
Google Scholar 
Zhang, R., Wang, P., Chen, J., Tian, Y. & Gao, J. Age estimation of bloodstains based on Raman spectroscopy and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 290, 122284. https://doi.org/10.1016/j.saa.2022.122284 (2023).Article 

Google Scholar 
Farber, C., Mahnke, M., Sanchez, L. & Kurouski, D. Advanced spectroscopic techniques for plant disease diagnostics. A review. Trends Analyt. Chem. 118, 43–49 (2019).Article 

Google Scholar 
Casadio, F., Daher, C. & Bellot-Gurlet, L. Raman spectroscopy of cultural heritage materials: Overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. (Cham.) 374(5), 62. https://doi.org/10.1007/s41061-016-0061-z (2016).Article 
PubMed 

Google Scholar 
Wustholz, K. L. et al. Structure−activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132(31), 10903–10910 (2010).Article 
PubMed 

Google Scholar 
Zrimsek, A. B. et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117(11), 7583–7613. https://doi.org/10.1021/acs.chemrev.6b00552 (2017).Article 
PubMed 

Google Scholar 
Sharma, B., Frontiera, R. R., Henry, A. I., Ringe, E. & Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today 15(1–2), 16–25 (2012).Article 

Google Scholar 
Brosseau, C. L. et al. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: Thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal. Chem. 81(8), 3056–3062. https://doi.org/10.1021/ac802761v (2009).Article 
PubMed 

Google Scholar 
Idone, A. et al. Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Analyst 138(20), 5895–5903. https://doi.org/10.1039/c3an00788j (2013).Article 
ADS 
PubMed 

Google Scholar 
Riskin, M., Tel-Vered, R., Lioubashevski, O. & Willner, I. Ultrasensitive surface Plasmon resonance detection of trinitrotoluene by a Bis-aniline-cross-linked Au nanoparticles composite. J. Am. Chem. Soc. 131(21), 7368–7378 (2009).Article 
PubMed 

Google Scholar 
Sylvia, J. M., Janni, J. A., Klein, J. & Spencer, K. M. Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 72(23), 5834–5840 (2000).Article 
PubMed 

Google Scholar 
Wei, W. Y. & White, I. M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138(4), 1020–1025 (2013).Article 
ADS 

Google Scholar 
Virkler, K. & Lednev, I. K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal. Bioanal. Chem. 396(1), 525–534 (2010).Article 
PubMed 

Google Scholar 
Holman, A. & Kurouski, D. The effects of sun exposure on colorant identification of permanently and semi-permanently dyed hair. Sci. Rep. 13(1), 2168. https://doi.org/10.1038/s41598-023-29221-8 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 
Holman, A. P. & Kurouski, D. Surface-enhanced Raman spectroscopy enables confirmatory detection of dyes on hair submerged in hypolimnion water for up to Twelve weeks. J. Forensic Sci. https://doi.org/10.1111/1556-4029.15347 (2023).Article 
PubMed 

Google Scholar 
Holman, A. P. & Kurouski, D. Role of race/ethnicity, sex, and age in surface-enhanced Raman spectroscopy- and infrared spectroscopy-based analysis of artificial colorants on hair. ACS Omega 8(23), 20675–20683. https://doi.org/10.1021/acsomega.3c01241 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Higgins, S. & Kurouski, D. Surface-enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes. Talanta 251, 123762. https://doi.org/10.1016/j.talanta.2022.123762 (2022).Article 
PubMed 

Google Scholar 
Peterson, M. & Kurouski, D. Non-destructive identification of dyes on fabric using near-infrared Raman spectroscopy. Molecules 28(23), 7864. https://doi.org/10.3390/molecules28237864 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Juarez, I. & Kurouski, D. Surface-enhanced Raman spectroscopy hair analysis after household contamination. Anal. Methods https://doi.org/10.1039/d3ay01219k (2023).Article 
PubMed 

Google Scholar 
Juarez, I. & Kurouski, D. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair. J. Forensic Sci. 68(1), 113–118. https://doi.org/10.1111/1556-4029.15165 (2023).Article 
PubMed 

Google Scholar 
Farber, C. & Kurouski, D. Raman spectroscopy and machine learning for Agricultural applications: Chemometric assessment of spectroscopic signatures of plants as the essential step toward digital farming. Front. Plant Sci. 13, 887511. https://doi.org/10.3389/fpls.2022.887511 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Shashilov, V. A. & Lednev, I. K. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem. Rev. 110(10), 5692–5713. https://doi.org/10.1021/cr900152h (2010).Article 
PubMed 

Google Scholar 
Doty, K. C., Muro, C. K. & Lednev, I. K. Predicting the time of the crime: Bloodstain aging estimation for up to two years. Forensic Chem. 5, 1–7 (2017).Article 

Google Scholar 
McLaughlin, G., Fikiet, M. A., Ando, M., Hamaguchi, H. & Lednev, I. K. Universal detection of body fluid traces in situ with Raman hyperspectroscopy for forensic purposes: Evaluation of a new detection algorithm (HAMAND) using semen samples. J. Raman Spectrosc. 80, 1147–1153 (2019).Article 
ADS 

Google Scholar 
Kistenev, Y. V., Borisov, A. V., Samarinova, A. A., Colon-Rodriguez, S. & Lednev, I. K. A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate. Sci. Rep. 13(1), 5384. https://doi.org/10.1038/s41598-023-31918-9 (2023).Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles