Carbon paste based sensor for sensitive Cr(III) ion determination in different water samples and anti-diabetic supplement

Shapcott, D. & Hubert, J. Chromium in Nutrition and Metabolism (Elsevier North Holland Biomedical Press, 1979).
Google Scholar 
Mertz, W. Chromium research from a distance: From 1959 to 1980. J. Am. Coll. Nutr. 17(6), 544–547 (1998).Article 
CAS 
PubMed 

Google Scholar 
Lefavi, R. G. et al. Efficacy of chromium supplementation in athletes; Emphasis on anabolism. Int. J. Sport Nutr. Exerc. Metab. 2(2), 111–122 (1992).Article 
CAS 

Google Scholar 
Afzal, S., & GA, O. Q. Chromium deficiency (2022).‏Swaroop, A. et al. Benefits of chromium(III) complexes in animal and human health. In The nutritional biochemistry of chromium (III) 251–278 (Elsevier, 2019).Chapter 

Google Scholar 
National Research Council, Commission on Life Sciences, & Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended dietary allowances (1989).‏Abbaspour, A., Refahi, M., Khalafi-Nezhad, A., Rad, N. S. & Behrouz, S. Carbon composite–PVC based membrane coated platinum electrode for chromium determination. J. Hazard. Mater. 184(1–3), 20–25 (2010).Article 
CAS 
PubMed 

Google Scholar 
Singh, A. K., Gupta, V. K. & Gupta, B. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal. Chim. Acta 585(1), 171–178 (2007).Article 
CAS 
PubMed 

Google Scholar 
Sun, Z. & Liang, P. Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Microchim. Acta 162, 121–125 (2008).Article 
CAS 

Google Scholar 
Divrikli, U., Soylak, M. & Elci, L. Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium(IV) hydroxide. Environ. Monit. Assess. 138, 167–172 (2008).Article 
CAS 
PubMed 

Google Scholar 
Riss, P., Connor, E. & Ryan, A. Determination of low levels of chromium in biological samples by ICP-MS using hydrogen as a reaction gas. Spectroscopy. 32(1), 40–43 (2017).
Google Scholar 
Elavarasi, M., Alex, S. A., Chandrasekaran, N. & Mukherjee, A. Simple fluorescence-based detection of Cr(III) and Cr(VI) using unmodified gold nanoparticles. Anal. Methods 6(24), 9554–9560 (2014).Article 

Google Scholar 
Kaur, V. & Malik, A. K. Speciation of chromium metal ions by RP-HPLC. J. Chromatogr. Sci. 47(3), 238–242 (2009).Article 
CAS 
PubMed 

Google Scholar 
Fabregat-Cabello, N. et al. Fast and accurate procedure for the determination of Cr(VI) in solid samples by isotope dilution mass spectrometry. Environ. Sci. Technol. 46(22), 12542–12549 (2012).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Kalcher, K. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2(6), 419–433 (1990).Article 
CAS 

Google Scholar 
Zayed, M. A., Mahmoud, W. H., Abbas, A. A., Ali, A. E. & Mohamed, G. G. A highly sensitive, selective and renewable carbon paste electrode based on a unique acyclic diamide ionophore for the potentiometric determination of lead ions in polluted water samples. RSC Adv. 10(30), 17552–17560 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ali, A. E., Abbas, A. A. & Mohamed, G. G. Synthesis and surface characterization of a chemically modified carbon paste electrode and its application in determination of Hg(II) ion in water, food and dental amalgam samples. Microchem. J. 184, 108178 (2023).Article 
CAS 

Google Scholar 
Ali, A. E., Fouad, O. A. & Mohamed, G. G. Theoretical and experimental approaches to the preparation, characterization and application of a newly synthesized mesoporous Zn-MOF as a selective ionophore for Ni(II) ion in carbon paste electrode matrix. J. Mol. Struct. 1285, 135475 (2023).Article 
CAS 

Google Scholar 
Eliwa, A. S., Ali, A. E., Hosny, W. M., Mohamed, G. G. & Deghadi, R. G. Sonochemical synthesis and characterization of novel copper based metal-organic framework: Its application as electrochemical sensor for determination of Cd(II) ion in real water samples. Inorg. Chem. Commun. 153, 110733 (2023).Article 
CAS 

Google Scholar 
Mahmoud, N. F., Fouad, O. A., Ali, A. E. & Mohamed, G. G. Potentiometric determination of the Al (III) ion in polluted water and pharmaceutical samples by a novel mesoporous copper metal–organic framework-modified carbon paste electrode. Indus. Eng. Chem. Res. 60(6), 2374–2387 (2021).Article 
CAS 

Google Scholar 
Adams, R.N. Electrochemistry at solid electrodes (1969).‏Tuzhi, P., Huiping, L. & Shuwen, W. Selective extraction and voltammetric determination of gold at a chemically modified carbon paste electrode. Analyst 118(10), 1321–1324 (1993).Article 
ADS 

Google Scholar 
Pei, J., Yin, Q. & Zhong, J. Potentiometric determination of trace silver based on the use of a carbon paste electrode. Talanta 38(10), 1185–1189 (1991).Article 
CAS 
PubMed 

Google Scholar 
Vytřas, K., Švancara, I. & Metelka, R. Carbon paste electrodes in electroanalytical chemistry. J. Serb. Chem. Soc. 74(10), 1021–1033 (2009).Article 

Google Scholar 
Tesfaye, E., Chandravanshi, B. S., Negash, N. & Tessema, M. A new modified carbon paste electrode using N1-hydroxy-N1, N2-diphenylbenzamidine for the square wave anodic stripping voltammetric determination of Pb(II) in environmental samples. Sens. Bio-Sens. Res. 38, 100520 (2022).Article 

Google Scholar 
Aghabozorg, H. & Ganjali, M. R. Separation and pre-concentration of trace amounts of lead on octadecyl silica membrane disks modified with a new S-containing Schiff’s base and its determination by flame atomic absorption spectroscopy. Microchem. J. 69, 1–6 (2001).Article 

Google Scholar 
Hashemi, O. R. et al. Separation and preconcentration of trace amounts of lead on octadecyl silica membrane disks modified with a new O, S-containing Schiff ’s base and its determination by flame atomic absorption spectroscopy. Anal. Sci. 16, 1221–1223 (2000).Article 
CAS 

Google Scholar 
Ghasemi, Z. et al. Pre-concentration of trace amounts of copper in aqueous samples by octadecyl silica membrane modified disks and determination by flame atomic absorption spectroscopy. Intern. J. Anal. Chem. 81, 233–242 (2001).Article 
CAS 

Google Scholar 
Ganjali, M. R. et al. Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff ’s base. Anal. Chim. Acta 440, 81–87 (2001).Article 
CAS 

Google Scholar 
Alizadeh, N., Ershad, S., Sharghi, H. & Shamsipur, M. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff ’s base. Fresenius J. Anal. Chem. 365, 511–515 (1999).Article 
CAS 

Google Scholar 
Lekha, L. et al. Schiff base complexes of rare earth metal ions: Synthesis, characterization and catalytic activity for the oxidation of aniline and substituted anilines. J. Organomet. Chem. 753, 72–80 (2014).Article 
ADS 
CAS 

Google Scholar 
Elwahy, A. H. & Abbas, A. A. Synthesis of new benzo-substituted macrocyclic ligands containing pyridine or triazole as subcyclic units. Tetrahedron 56(6), 885–895 (2000).Article 
CAS 

Google Scholar 
Abu-Shawish, H. M. A mercury(II) selective sensor based on N, N′-bis(salicylaldehyde)-phenylenediamine as neutral carrier for potentiometric analysis in water samples. J. Hazard. Mater. 167(1–3), 602–608 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zayed, M. A., Abbas, A. A., Mahmoud, W. H., Ali, A. E. & Mohamed, G. G. Development and surface characterization of a bis (aminotriazoles) derivative based renewable carbon paste electrode for selective potentiometric determination of Cr(III) ion in real water samples. Microchem. J. 159, 105478 (2020).Article 
CAS 

Google Scholar 
Girault, H. H. Electrochemistry at liquid–liquid interfaces. Electroanal. Chem. 23, 1–104 (2010).CAS 

Google Scholar 
Bhat, V. S., Ijeri, V. S. & Srivastava, A. K. Coated wire lead(II) selective potentiometric sensor based on 4-tert-butylcalix [6] arene. Sens. Actuators B Chem. 99(1), 98–105 (2004).Article 
ADS 
CAS 

Google Scholar 
Umezawa, Y., Umezawa, K. & Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA, Bpot values (Technical Report). Pure Appl. Chem. 67(3), 507–518 (1995).Article 

Google Scholar 
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K. & Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure Appl. Chem. 72(10), 1851–2082 (2000).Article 
CAS 

Google Scholar 
Tohda, K., Dragoe, D., Shibata, M. & Umezawa, Y. Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on neutral ionophores: Experimental and theoretical verification. Anal. Sci. 17(6), 733–743 (2001).Article 
CAS 
PubMed 

Google Scholar 
Umezawa, Y. Ion-Selective Electrodes. In Encyclopedia of Supramolecular Chemistry-Two-Volume Set (Print) 747–752 (CRC Press, 2013).
Google Scholar 
Bailey, P. L. Analysis with ion-selective electrodes (U.M.I., 1980).
Google Scholar 
Bakker, E., Pretsch, E. & Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 72(6), 1127–1133 (2000).Article 
CAS 
PubMed 

Google Scholar 
Ali, T. A. & Mohamed, G. G. Development of chromium(III) selective potentiometric sensors for its determination in petroleum water samples using synthesized nano schiff base complex as an ionophore. J. AOAC Int. 105(3), 727–738 (2022).Article 
PubMed 

Google Scholar 
Maeda, K., An, D., Kuriki, R., Lu, D. & Ishitani, O. Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex. Beilstein J. Org. Chem. 14, 1806–1812 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Abou-Elyazed, A. S. et al. Graphitic carbon nitride/MOFs hybrid composite as highly selective and sensitive electrodes for calcium ion detection. Molecules 28, 8149 (2023).Article 

Google Scholar 
Fouad, O. A., Ali, A. E., Mohamed, G. G. & Mahmoud, N. F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr(III) ion determination in centrum multivitamin and real water samples. Microchem. J. 175, 107228 (2022).Article 
CAS 

Google Scholar 
Kumar, P., Sharma, H. K. & Shalaan, K. G. Development of chromium (III) selective potentiometric sensor by using synthesized triazole derivative as an ionophore. J. Chem. https://doi.org/10.1155/2013/142752 (2013).Article 

Google Scholar 
Abu-Shawish, H. M., Saadeh, S. M., Hartani, K. & Dalloul, H. M. A comparative study of chromium(III) ion-selective electrodes based on N, N-bis(salicylidene)-o-phenylenediaminatechromium (III). J. Iran. Chem. Soc. 6, 729–737 (2009).Article 
CAS 

Google Scholar 
Kazemi, S. Y., Sadat Hamidi, A., Asanjarani, N. & Zolgharnein, J. Optimization of a new polymeric chromium(III) membrane electrode based on methyl violet by using experimental design. Talanta 81(4–5), 1681–1687 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ali, T. A., Saber, A. L., Mohamed, G. G. & Bawazeer, T. M. Determination of Cr(III) ions in different water samples using chromium(III)-sensor based on N-[4-(dimethylamino) benzylidene]-6-nitro-1, 3-benzothiazol-2-amine. Int. J. Electrochem. Sci. 9(9), 4932–4943 (2014).Article 

Google Scholar 
Abbaspour, A. & Izadyar, A. Chromium (III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta 53(5), 1009–1013 (2001).Article 
CAS 
PubMed 

Google Scholar 
Fekri, M. H., Darvishpour, M. & Baghdar, E. Chromium(III) ion selective electrode based on 2H–1, 4-benzothioazine-2,3(4H) dione dioxime as a neutral carrier. J. Phys. Theo. Chem. 8, 17–21 (2011).
Google Scholar 
Zamani, H. A. et al. Determination of Cr3+ ions in biological and environmental samples by a chromium (III) membrane sensor based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide. Desalination 249(2), 560–565 (2009).Article 
CAS 

Google Scholar 
Kumar, P. & Shim, Y. B. Chromium(III)-selective electrode using p-(4-acetanilidazo) calix [4] arene as an ionophore in PVC matrix. Bull. Korean Chem. Soc. 29(12), 2471–2476 (2008).Article 
CAS 

Google Scholar 
Ghaedi, M., Shokrollahi, A., Salimibeni, A. R., Noshadi, S. & Joybar, S. Preparation of a new chromium(III) selective electrode based on 1-[(2-hydroxy ethyl) amino]-4-methyl-9H-thioxanthen-9-one as a neutral carrier. J. Hazard. Mater. 178(1–3), 157–163 (2010).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles