Predicting blood–brain barrier permeability of molecules with a large language model and machine learning

Khor, S. L. Q., Ng, K. Y., Koh, R. Y. & Chye, S. M. Blood–brain barrier and neurovascular unit dysfunction in Parkinson’s disease: From clinical insights to pathogenic mechanisms and novel therapeutic approaches. CNS Neurol. Disord. Drug Targets https://doi.org/10.2174/1871527322666230330093829 (2023).Article 

Google Scholar 
Harris, W. J. et al. In vivo methods for imaging blood–brain barrier function and dysfunction. Eur. J. Nucl. Med. Mol. Imaging 50, 1051–1083. https://doi.org/10.1007/s00259-022-05997-1 (2023).Article 
PubMed 

Google Scholar 
Lawrence, J. M., Schardien, K., Wigdahl, B. & Nonnemacher, M. R. Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 11, 42. https://doi.org/10.1186/s40478-023-01526-9 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Suprewicz, L. et al. Blood-brain barrier function in response to SARS-CoV-2 and its spike protein. Neurol. Neurochir. Pol. 57, 14–25. https://doi.org/10.5603/PJNNS.a2023.0014 (2023).Article 
PubMed 

Google Scholar 
Ailioaie, L. M., Ailioaie, C. & Litscher, G. Photobiomodulation in Alzheimer’s disease-a complementary method to state-of-the-art pharmaceutical formulations and nanomedicine?. Pharmaceutics. https://doi.org/10.3390/pharmaceutics15030916 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Critchley, B. J., Gaspar, H. B. & Benedetti, S. Targeting the central nervous system in lysosomal storage diseases: Strategies to deliver therapeutics across the blood-brain barrier. Mol. Ther. 31, 657–675. https://doi.org/10.1016/j.ymthe.2022.11.015 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, R. et al. Blood–brain barrier integrity damage in bacterial meningitis: The underlying link, mechanisms, and therapeutic targets. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24032852 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Okura, T., Higuchi, K. & Deguchi, Y. The blood–brain barrier transport mechanism controlling analgesic effects of opioid drugs in CNS. Yakugaku Zasshi 135, 697–702. https://doi.org/10.1248/yakushi.14-00234-2 (2015).Article 
CAS 
PubMed 

Google Scholar 
Ueno, M. Mechanisms of the penetration of blood-borne substances into the brain. Curr. Neuropharmacol. 7, 142–149. https://doi.org/10.2174/157015909788848901 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Weiss, N., Miller, F., Cazaubon, S. & Couraud, P. O. Blood–brain barrier part III: Therapeutic approaches to cross the blood–brain barrier and target the brain. Rev. Neurol. (Paris) 166, 284–288. https://doi.org/10.1016/j.neurol.2009.06.005 (2010).Article 
CAS 
PubMed 

Google Scholar 
Nielsen, P. A., Andersson, O., Hansen, S. H., Simonsen, K. B. & Andersson, G. Models for predicting blood–brain barrier permeation. Drug Discov. Today 16, 472–475. https://doi.org/10.1016/j.drudis.2011.04.004 (2011).Article 
CAS 
PubMed 

Google Scholar 
Racz, A., Bajusz, D., Miranda-Quintana, R. A. & Heberger, K. Machine learning models for classification tasks related to drug safety. Mol. Divers. 25, 1409–1424. https://doi.org/10.1007/s11030-021-10239-x (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Remtulla, R., Das, S. K. & Levin, L. A. Predicting absorption-distribution properties of neuroprotective phosphine-borane compounds using in silico modeling and machine learning. Molecules. https://doi.org/10.3390/molecules26092505 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Wang, Z. et al. In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 13, 2189–2201. https://doi.org/10.1002/cmdc.201800533 (2018).Article 
CAS 
PubMed 

Google Scholar 
Montanari, F. & Ecker, G. F. Prediction of drug-ABC-transporter interaction—Recent advances and future challenges. Adv. Drug Deliv. Rev. 86, 17–26. https://doi.org/10.1016/j.addr.2015.03.001 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Varadharajan, S. et al. Exploring in silico prediction of the unbound brain-to-plasma drug concentration ratio: Model validation, renewal, and interpretation. J. Pharm. Sci. 104, 1197–1206. https://doi.org/10.1002/jps.24301 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, H., Winiwarter, S., Friden, M., Antonsson, M. & Engkvist, O. In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J. Mol. Graph. Model. 29, 985–995. https://doi.org/10.1016/j.jmgm.2011.04.004 (2011).Article 
CAS 
PubMed 

Google Scholar 
Guntner, A. S., Bogl, T., Mlynek, F. & Buchberger, W. Large-scale evaluation of collision cross sections to investigate blood–brain barrier permeation of drugs. Pharmaceutics https://doi.org/10.3390/pharmaceutics13122141 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Shaker, B. et al. LightBBB: Computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 37, 1135–1139. https://doi.org/10.1093/bioinformatics/btaa918 (2021).Article 
CAS 
PubMed 

Google Scholar 
Meng, F., Xi, Y., Huang, J. & Ayers, P. W. A curated diverse molecular database of blood–brain barrier permeability with chemical descriptors. Sci. Data 8, 289. https://doi.org/10.1038/s41597-021-01069-5 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kumar, R. et al. DeePred-BBB: A blood brain barrier permeability prediction model with improved accuracy. Front. Neurosci. 16, 858126. https://doi.org/10.3389/fnins.2022.858126 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Zhao, Y. H. et al. Predicting penetration across the blood–brain barrier from simple descriptors and fragmentation schemes. J. Chem. Inf. Model. 47, 170–175. https://doi.org/10.1021/ci600312d (2007).Article 
CAS 
PubMed 

Google Scholar 
Shen, J., Cheng, F., Xu, Y., Li, W. & Tang, Y. Estimation of ADME properties with substructure pattern recognition. J. Chem. Inf. Model. 50, 1034–1041. https://doi.org/10.1021/ci100104j (2010).Article 
CAS 
PubMed 

Google Scholar 
Roy, D., Hinge, V. K. & Kovalenko, A. To pass or not to pass: Predicting the blood–brain barrier permeability with the 3D-RISM-KH molecular solvation theory. ACS Omega 4, 16774–16780. https://doi.org/10.1021/acsomega.9b01512 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Osipenko, S., Botashev, K., Nikolaev, E. & Kostyukevich, Y. Transfer learning for small molecule retention predictions. J. Chromatogr. A 1644, 462119. https://doi.org/10.1016/j.chroma.2021.462119 (2021).Article 
CAS 
PubMed 

Google Scholar 
Woo, S. & Shenvi, R. A. Natural product synthesis through the lens of informatics. Acc. Chem. Res. 54, 1157–1167. https://doi.org/10.1021/acs.accounts.0c00791 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lampa, S., Dahlo, M., Alvarsson, J. & Spjuth, O. SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines. Gigascience https://doi.org/10.1093/gigascience/giz044 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Przybylak, K. R. et al. Characterisation of data resources for in silico modelling: Benchmark datasets for ADME properties. Expert Opin. Drug Metab. Toxicol. 14, 169–181. https://doi.org/10.1080/17425255.2017.1316449 (2018).Article 
CAS 
PubMed 

Google Scholar 
Afantitis, A. et al. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput. Struct. Biotechnol. J. 18, 583–602. https://doi.org/10.1016/j.csbj.2020.02.023 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Minkiewicz, P., Iwaniak, A. & Darewicz, M. Annotation of peptide structures using SMILES and other chemical codes-practical solutions. Molecules https://doi.org/10.3390/molecules22122075 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Munteanu, C. R., Gonzalez-Diaz, H., Garcia, R., Loza, M. & Pazos, A. Bio-AIMS collection of chemoinformatics web tools based on molecular graph information and artificial intelligence models. Comb. Chem. High Throughput Screen 18, 735–750. https://doi.org/10.2174/1386207318666150803140950 (2015).Article 
CAS 
PubMed 

Google Scholar 
Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: A pre-trained transformer for computational chemistry. Mach. Learn Sci. Technol. 3, 015022. https://doi.org/10.1088/2632-2153/ac3ffb (2022).Article 
ADS 

Google Scholar 
Ullah, Z., Usman, M. & Gwak, J. MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 216, 119475. https://doi.org/10.1016/j.eswa.2022.119475 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Gulamali, F. F. et al. Autoencoders for sample size estimation for fully connected neural network classifiers. NPJ Digit. Med. 5, 180. https://doi.org/10.1038/s41746-022-00728-0 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
NVIDIA. Nvidia/MegaMolBART: A deep learning model for small molecule drug discovery and cheminformatics based on smiles. GitHub. Retrieved February 20, 2023, from https://github.com/NVIDIA/MegaMolBART. (2022).Sterling, T. & Irwin, J. J. ZINC 15—Ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kadukova, M., Chupin, V. & Grudinin, S. Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4. J. Comput. Aided Mol. Des. 34, 191–200. https://doi.org/10.1007/s10822-019-00263-3 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Landrum, G. RDKit Documentation. Release 2011.12.1. (2012).Plisson, F. & Piggott, A. M. Predicting blood–brain barrier permeability of marine-derived kinase inhibitors using ensemble classifiers reveals potential hits for neurodegenerative disorders. Mar. Drugs https://doi.org/10.3390/md17020081 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Jillella, G. K., Ojha, P. K. & Roy, K. Application of QSAR for the identification of key molecular fragments and reliable predictions of effects of textile dyes on growth rate and biomass values of Raphidocelis subcapitata. Aquat. Toxicol. 238, 105925. https://doi.org/10.1016/j.aquatox.2021.105925 (2021).Article 
CAS 
PubMed 

Google Scholar 
Jillella, G. K., Khan, K. & Roy, K. Application of QSARs in identification of mutagenicity mechanisms of nitro and amino aromatic compounds against Salmonella typhimurium species. Toxicol. In Vitro. 65, 104768. https://doi.org/10.1016/j.tiv.2020.104768 (2020).Article 
CAS 
PubMed 

Google Scholar 
Zulfiqar, M., Gadelha, L., Steinbeck, C., Sorokina, M. & Peters, K. MAW: The reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry. J. Cheminform. 15, 32. https://doi.org/10.1186/s13321-023-00695-y (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gimadiev, T. et al. CGRdb2.0: A python database management system for molecules, reactions, and chemical data. J. Chem. Inf. Model. 62, 2015–2020. https://doi.org/10.1021/acs.jcim.1c01105 (2022).Article 
CAS 
PubMed 

Google Scholar 
Donmazov, S., Saruhan, E. N., Pekkan, K. & Piskin, S. Review of machine learning techniques in soft tissue biomechanics and biomaterials. Cardiovasc. Eng. Technol. https://doi.org/10.1007/s13239-024-00737-y (2024).Article 
PubMed 

Google Scholar 
Tang, Y., Zhang, Y. Q., Chawla, N. V. & Krasser, S. SVMs modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. B Cybern. 39, 281–288. https://doi.org/10.1109/TSMCB.2008.2002909 (2009).Article 
PubMed 

Google Scholar 
Orel, E. et al. An automated literature review tool (LiteRev) for streamlining and accelerating research using natural language processing and machine learning: Descriptive performance evaluation study. J. Med. Internet. Res. 25, e39736. https://doi.org/10.2196/39736 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Hassaballah, M., Wazery, Y. M., Ibrahim, I. E. & Farag, A. ECG heartbeat classification using machine learning and metaheuristic optimization for smart healthcare systems. Bioengineering (Basel) https://doi.org/10.3390/bioengineering10040429 (2023).Article 
PubMed 

Google Scholar 
Bohlmann, A., Mostafa, J. & Kumar, M. Machine learning and medication adherence: Scoping review. JMIRx Med. 2, e26993. https://doi.org/10.2196/26993 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Guo, W. et al. Review of machine learning and deep learning models for toxicity prediction. Exp. Biol. Med. (Maywood) 248, 1952–1973. https://doi.org/10.1177/15353702231209421 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Aldhoayan, M. D. & Aljubran, Y. Prediction of ICU patients’ deterioration using machine learning techniques. Cureus 15, e38659. https://doi.org/10.7759/cureus.38659 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Khan, M. A. et al. A deep learning-based intrusion detection system for MQTT enabled IoT. Sensors (Basel) https://doi.org/10.3390/s21217016 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Afzal, M., Alam, F., Malik, K. M. & Malik, G. M. Clinical context-aware biomedical text summarization using deep neural network: Model development and validation. J. Med. Internet. Res. 22, e19810. https://doi.org/10.2196/19810 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Ju, W. et al. A comprehensive survey on deep graph representation learning. Neural Netw. 173, 106207. https://doi.org/10.1016/j.neunet.2024.106207 (2024).Article 
PubMed 

Google Scholar 
Hajek, P., Barushka, A. & Munk, M. Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis. Int. J. Neural Syst. 31, 2150013. https://doi.org/10.1142/S0129065721500131 (2021).Article 
PubMed 

Google Scholar 
Hudson, I. L. Data integration using advances in machine learning in drug discovery and molecular biology. Methods Mol. Biol. 2190, 167–184. https://doi.org/10.1007/978-1-0716-0826-5_7 (2021).Article 
CAS 
PubMed 

Google Scholar 
Johnson, G. W. et al. Localizing seizure onset zones in surgical epilepsy with neurostimulation deep learning. J. Neurosurg. 138, 1002–1007. https://doi.org/10.3171/2022.8.JNS221321 (2023).Article 
PubMed 

Google Scholar 
Zheng, S. et al. Application of machine learning and deep learning methods for hydrated electron rate constant prediction. Environ. Res. 231, 115996. https://doi.org/10.1016/j.envres.2023.115996 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yang, J.-S. et al. In silico de novo curcuminoid derivatives from the compound library of natural products research laboratories inhibit COVID-19 3CLpro activity. Nat. Prod. Commun. 15, 1934578×20953262. https://doi.org/10.1177/1934578×20953262 (2020).Article 
CAS 

Google Scholar 
Mauri, A., Consonni, V., Pavan, M. & Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations. Math. Comput. Chem. 56, 237–248. https://doi.org/10.1111/j.1467-9280.1995.tb00298.x (2006).Article 
CAS 

Google Scholar 
Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474. https://doi.org/10.1002/jcc.21707 (2011).Article 
CAS 
PubMed 

Google Scholar 
Janke, J. J. et al. Computational screening for mAb colloidal stability with coarse-grained, molecular-scale simulations. J. Phys. Chem. B 128, 1515–1526. https://doi.org/10.1021/acs.jpcb.3c05303 (2024).Article 
CAS 
PubMed 

Google Scholar 
Shimamura, K., Takeshita, Y., Fukushima, S., Koura, A. & Shimojo, F. Computational and training requirements for interatomic potential based on artificial neural network for estimating low thermal conductivity of silver chalcogenides. J. Chem. Phys. 153, 234301. https://doi.org/10.1063/5.0027058 (2020).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Wardecki, D., Dolowy, M. & Bober-Majnusz, K. Evaluation of the usefulness of topological indices for predicting selected physicochemical properties of bioactive substances with anti-androgenic and hypouricemic activity. Molecules https://doi.org/10.3390/molecules28155822 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Baira, K. et al. Multitask quantum study of the curcumin-based complex physicochemical and biological properties. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23052832 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Pham, T. et al. DeepARV: Ensemble deep learning to predict drug–drug interaction of clinical relevance with antiretroviral therapy. NPJ Syst. Biol. Appl. 10, 48. https://doi.org/10.1038/s41540-024-00374-0 (2024).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Perez-Correa, I., Giunta, P. D., Marino, F. J. & Francesconi, J. A. Transformer-based representation of organic molecules for potential modeling of physicochemical properties. J. Chem. Inf. Model. 63, 7676–7688. https://doi.org/10.1021/acs.jcim.3c01548 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tran, T. & Ekenna, C. Molecular descriptors property prediction using transformer-based approach. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241511948 (2023).Article 
PubMed 
PubMed Central 

Google Scholar 
Liu, X., Ye, K., van Vlijmen, H. W. T. & van Westen, G. J. P. DrugEx v3: Scaffold-constrained drug design with graph transformer-based reinforcement learning. J. Cheminform. 15, 24. https://doi.org/10.1186/s13321-023-00694-z (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Yang, L. et al. Transformer-based generative model accelerating the development of novel BRAF inhibitors. ACS Omega 6, 33864–33873. https://doi.org/10.1021/acsomega.1c05145 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kim, S., Tariq, S., Heo, S. & Yoo, C. Interpretable attention-based multi-encoder transformer based QSPR model for assessing toxicity and environmental impact of chemicals. Chemosphere 350, 141086. https://doi.org/10.1016/j.chemosphere.2023.141086 (2024).Article 
CAS 
PubMed 

Google Scholar 
Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. D. Novo design of bioactive small molecules by artificial intelligence. Mol. Inform. https://doi.org/10.1002/minf.201700153 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Arus-Pous, J. et al. Randomized SMILES strings improve the quality of molecular generative models. J. Cheminform. 11, 71. https://doi.org/10.1186/s13321-019-0393-0 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Carracedo-Reboredo, P. et al. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 19, 4538–4558. https://doi.org/10.1016/j.csbj.2021.08.011 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Matsukiyo, Y., Yamanaka, C. & Yamanishi, Y. D. Novo generation of chemical structures of inhibitor and activator candidates for therapeutic target proteins by a transformer-based variational autoencoder and bayesian optimization. J. Chem. Inf. Model 64, 2345–2355. https://doi.org/10.1021/acs.jcim.3c00824 (2024).Article 
CAS 
PubMed 

Google Scholar 
Pereira, T. O., Abbasi, M. & Arrais, J. P. Enhancing reinforcement learning for de novo molecular design applying self-attention mechanisms. Brief Bioinform. https://doi.org/10.1093/bib/bbad368 (2023).Article 
PubMed 

Google Scholar 
Wu, T., Tang, Y., Sun, Q. & Xiong, L. Molecular joint representation learning via multi-modal information of SMILES and graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 20, 3044–3055. https://doi.org/10.1109/TCBB.2023.3253862 (2023).Article 
CAS 
PubMed 

Google Scholar 
Yan, X. & Liu, Y. Graph-sequence attention and transformer for predicting drug-target affinity. RSC Adv. 12, 29525–29534. https://doi.org/10.1039/d2ra05566j (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Moradi-Afrapoli, F. et al. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood–brain barrier and intestinal drug permeability studies. J. Pharm. Biomed. Anal. 128, 264–274. https://doi.org/10.1016/j.jpba.2016.05.039 (2016).Article 
CAS 
PubMed 

Google Scholar 
Noorani, B. et al. LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS 17, 61. https://doi.org/10.1186/s12987-020-00224-1 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sun, L. et al. Development and validation of a highly sensitive LC-MS/MS method for determination of brain active agent dianhydrogalactitol in mouse plasma and tissues: Application to a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1087–1088, 90–97. https://doi.org/10.1016/j.jchromb.2018.04.026 (2018).Article 
CAS 

Google Scholar 
Wu, S. Y. et al. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells. PLoS One 9, e112220. https://doi.org/10.1371/journal.pone.0112220 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Toth, A. E., Nielsen, S. S. E., Tomaka, W., Abbott, N. J. & Nielsen, M. S. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 16, 14. https://doi.org/10.1186/s12987-019-0134-9 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chiu, Y. J. et al. Next-generation sequencing analysis reveals that MTH-3, a novel curcuminoid derivative, suppresses the invasion of MDA-MB-231 triple-negative breast adenocarcinoma cells. Oncol. Rep. https://doi.org/10.3892/or.2021.8084 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Huang, C.-W. et al. In silico target analysis of treatment for COVID-19 using Huang-Lian-Shang-Qing-Wan, a traditional Chinese medicine formula. Nat. Prod. Commun. 16, 1934578X211030818. https://doi.org/10.1177/1934578X211030818 (2021).Article 
CAS 

Google Scholar 
Wang, C. H. et al. Protective effects of Jing-Si-herbal-tea in inflammatory cytokines-induced cell injury on normal human lung fibroblast via multiomic platform analysis. Tzu Chi Med. J. 36, 152–165. https://doi.org/10.4103/tcmj.tcmj_267_23 (2024).Article 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles