Non-aqueous alkoxide-mediated electrochemical carbon capture

Lee, H. et al. AR6 Synthesis Report. Summary for Policymakers (IPCC, 2023).Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).Article 

Google Scholar 
Chu, S. Carbon capture and sequestration. Science 325, 1599 (2009).Article 

Google Scholar 
Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).Article 

Google Scholar 
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).Article 

Google Scholar 
Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).Article 

Google Scholar 
Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).Article 

Google Scholar 
Heldebrant, D. J. et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities, and outlook. Chem. Rev. 117, 9594–9624 (2017).Article 

Google Scholar 
Cantu, D. C. et al. Structure–property reduced order model for viscosity prediction in single-component CO2-binding organic liquids. Green Chem. 18, 6004–6011 (2016).Article 

Google Scholar 
Heldebrant, D. J., Yonker, C. R., Jessop, P. G. & Phan, L. Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 1, 487–493 (2008).
Google Scholar 
Jiang, Y. et al. Techno-economic comparison of various process configurations for post-combustion carbon capture using a single-component water-lean solvent. Int. J. Greenh. Gas Control 106, 103279 (2021).Article 

Google Scholar 
Ciferno, J. P., Fout, T. E., Jones, A. P. & Murphy, J. T. Capturing carbon from existing coal-fired power plants. Chem. Eng. Prog. 105, 33 (2009).
Google Scholar 
Rheinhardt, J. H., Singh, P., Tarakeshwar, P. & Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017).Article 

Google Scholar 
Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).Article 

Google Scholar 
Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).Article 

Google Scholar 
Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022).Article 

Google Scholar 
Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).Article 

Google Scholar 
Gurkan, B., Simeon, F. & Hatton, T. A. Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustain. Chem. Eng. 3, 1394–1405 (2015).Article 

Google Scholar 
Diederichsen, K. M., Liu, Y., Ozbek, N., Seo, H. & Hatton, T. A. Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. Joule 6, 221–239 (2022).Article 

Google Scholar 
Li, X., Zhao, X., Liu, Y., Hatton, T. A. & Liu, Y. Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nat. Energy 7, 1065–1075 (2022).Article 

Google Scholar 
Jeziorek, D. et al. Theoretical and electrochemical study of the mechanism of anthraquinone-mediated one-electron reduction of oxygen: the involvement of adducts of dioxygen species to anthraquinones. J. Chem. Soc. Perkin Trans. 2, 229–236 (1997).Article 

Google Scholar 
Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).Article 

Google Scholar 
Barlow, J. M. & Yang, J. Y. Oxygen-stable electrochemical CO2 capture and concentration with quinones using alcohol additives. J. Am. Chem. Soc. 144, 14161–14169 (2022).Article 

Google Scholar 
Barlow, J. M. et al. Molecular design of redox carriers for electrochemical CO2 capture and concentration. Chem. Soc. Rev. 51, 8415–8433 (2022).Article 

Google Scholar 
Schneider, C., Lafortune, J. H. W., Melen, R. L. & Stephan, D. W. Lewis and Brønsted basicity of phosphine–diazomethane derivatives. Dalton Trans. 47, 12742–12749 (2018).Article 

Google Scholar 
Voegtle, M. J. & Dawlaty, J. M. Can Brønsted photobases act as Lewis photobases? J. Am. Chem. Soc. 144, 8178–8184 (2022).Article 

Google Scholar 
Hammes-Schiffer, S. Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42, 1881–1889 (2009).Article 

Google Scholar 
Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).Article 

Google Scholar 
Privalova, E. et al. CO2 removal with ‘switchable’ versus ‘classical’ ionic liquids. Sep. Purif. Technol. 97, 42–50 (2012).Article 

Google Scholar 
Gupta, N. & Linschitz, H. Hydrogen-bonding and protonation effects in electrochemistry of quinones in aprotic solvents. J. Am. Chem. Soc. 119, 6384–6391 (1997).Article 

Google Scholar 
Katsumi, J., Nakayama, T., Esaka, Y. & Uno, B. Mechanistic study on the electrochemical reduction of 9,10-anthraquinone in the presence of hydrogen-bond and proton donating additives. Anal. Sci. 28, 257–265 (2012).Article 

Google Scholar 
Yang, Q. et al. Holistic prediction of the pKa in diverse solvents based on a machine‐learning approach. Angew. Chem. Int. Ed. 59, 19282–19291 (2020).Article 

Google Scholar 
Ugur, I., Marion, A., Parant, S., Jensen, J. H. & Monard, G. Rationalization of the pKa values of alcohols and thiols using atomic charge descriptors and its application to the prediction of amino acid pKa’s. J. Chem. Inf. Model. 54, 2200–2213 (2014).Article 

Google Scholar 
Cheng, S. & Hawley, M. D. Electro-generated bases: the role of weak electroinactive proton donors and the effect of electrocatalysis on the redox behavior of azobenzene. J. Org. Chem. 50, 3388–3392 (1985).Article 

Google Scholar 
Suo, X. et al. CO2 chemisorption behavior of coordination‐derived phenolate sorbents. ChemSusChem 14, 2854–2859 (2021).Article 

Google Scholar 
Matsuta, S., Asada, T. & Kitaura, K. Vibrational assignments of lithium alkyl carbonate and lithium alkoxide in the infrared spectra an ab initio MO study. J. Electrochem. Soc. 147, 1695–1702 (2000).Article 

Google Scholar 
Gireaud, L., Grugeon, S., Laruelle, S., Pilard, S. & Tarascon, J. M. Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts. J. Electrochem. Soc. 152, A850 (2005).Article 

Google Scholar 
Zhang, Z., Kummeth, A. L., Yang, J. Y. & Alexandrova, A. N. Inverse molecular design of alkoxides and phenoxides for aqueous direct air capture of CO2. Proc. Natl Acad. Sci. USA 119, e2123496119 (2022).Article 

Google Scholar 
Lehmann, M. L. et al. Membrane design for non-aqueous redox flow batteries: current status and path forward. Chem 8, 1611–1636 (2022).Article 

Google Scholar 
Pezeshki, A. M., Clement, J. T., Veith, G. M., Zawodzinski, T. A. & Mench, M. M. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 294, 333–338 (2015).Article 

Google Scholar 
Seo, H. & Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material. Nat. Commun. 14, 313 (2023).Article 

Google Scholar 
Pang, S. et al. A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage. Nat. Energy 8, 1126–1136 (2023).Article 

Google Scholar 
Jin, S., Wu, M., Jing, Y., Gordon, R. G. & Aziz, M. J. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nat. Commun. 13, 2140 (2022).Article 

Google Scholar 
Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy Environ. Sci. 13, 3706–3722 (2020).Article 

Google Scholar 
Diederichsen, K. M. & Hatton, T. A. Nondimensional analysis of a hollow fiber membrane contactor for direct air capture. Ind. Eng. Chem. Res. 61, 11964–11976 (2022).Article 

Google Scholar 
Diederichsen, K. M., Dewitt, S. J. A. & Hatton, T. A. Electrochemically facilitated transport of CO2 between gas diffusion electrodes in flat and hollow fiber geometries. ACS EST Eng. 3, 1001–1012 (2023).Article 

Google Scholar 
Chuah, C. Y., Kim, K., Lee, J., Koh, D.-Y. & Bae, T.-H. CO2 absorption using membrane contactors: recent progress and future perspective. Ind. Eng. Chem. Res. 59, 6773–6794 (2020).Article 

Google Scholar 
Bochevarov, A. D. et al. Jaguar: a high‐performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 113, 2110–2142 (2013).Article 

Google Scholar 
Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).Article 

Google Scholar 
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).Article 

Google Scholar 
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).Article 

Google Scholar 
Tannor, D. J. et al. Accurate first principles calculation of molecular charge distributions and solvation energies from ab initio quantum mechanics and continuum dielectric theory. J. Am. Chem. Soc. 116, 11875–11882 (1994).Article 

Google Scholar 

Hot Topics

Related Articles