CuO-ZIF-8 modified electrode surface as a new electrochemical sensing platform for detection of free chlorine in aqueous solution

White, G. Hand Book of Chlorination (Van Nostrand Reinhold Company, 1986).
Google Scholar 
Wilcox, M. et al. Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. J. Hosp. Infect. 54(2), 109–114 (2003).Article 
CAS 
PubMed 

Google Scholar 
Del Campo, F. J., Ordeig, O. & Muñoz, F. J. Improved free chlorine amperometric sensor chip for drinking water applications. Anal. Chim. Acta 554(1–2), 98–104 (2005).Article 

Google Scholar 
Shen, C. et al. Dynamic effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157: H7, and non-O157 Shiga toxin–producing E. coli. J. Food Prot. 76(3), 386–393 (2013).Article 
CAS 
PubMed 

Google Scholar 
Ordeig, O. et al. Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanal. Int. J. Devot. Fundam. Pract. Asp. Electroanal. 17(18), 1641–1648 (2005).CAS 

Google Scholar 
Kumar, D. R. et al. Polydopamine@ electrochemically reduced graphene oxide-modified electrode for electrochemical detection of free-chlorine. Sens. Actuators B Chem. 240, 818–828 (2017).Article 
ADS 
CAS 

Google Scholar 
Wilson, R. E., Stoianov, I. & O’Hare, D. Continuous chlorine detection in drinking water and a review of new detection methods. Johnson Matthey Technol. Rev. 63(2), 103–118 (2019).Article 
CAS 

Google Scholar 
Deborde, M. & Von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: A critical review. Water res. 42(1–2), 13–51 (2008).Article 
CAS 
PubMed 

Google Scholar 
Schreiber, J. S. The occurrence of trihalomethanes in public water supply systems of New York state. J. Am. Water Works Assoc. 73(3), 154–159 (1981).Article 
CAS 

Google Scholar 
Nemery, B., Hoet, P. & Nowak, D. Indoor swimming pools, water chlorination and respiratory health. Eur. Respir. Soc. 19, 790–793 (2002).Article 
CAS 

Google Scholar 
Lewis, C. et al. Estimated effects of disinfection by-products on preterm birth in a population served by a single water utility. Environ. Health Perspect. 115(2), 290–295 (2007).Article 
CAS 
PubMed 

Google Scholar 
Kilburn, K. H. Chlorine-induced damage documented by neurophysiological, neuropsychological, and pulmonary testing. Arch. Environ. Health Int. J. 55(1), 31–37 (2000).Article 
CAS 

Google Scholar 
Jolley, R. L., Gorchev, H. & Hamilton, D. Jr. Water Chlorination: Environmental Impact and Health Effects Vol. 2 (Ann Arbor Science Publishers Inc, 1978).
Google Scholar 
Burn, J. Disinfectants and disinfection. Lancet 258(6686), 739 (1951).Article 

Google Scholar 
Rice, E. W. et al. Standard Methods for the Examination of Water and Wastewater Vol. 10 (American public health association Washington, 2012).
Google Scholar 
Wakigawa, K. et al. Rapid and selective determination of free chlorine in aqueous solution using electrophilic addition to styrene by gas chromatography/mass spectrometry. Talanta 103, 81–85 (2013).Article 
CAS 
PubMed 

Google Scholar 
Melchert, W. R., Oliveira, D. R. & Rocha, F. R. An environmentally friendly flow system for high-sensitivity spectrophotometric determination of free chlorine in natural waters. Microchem. J. 96(1), 77–81 (2010).Article 
CAS 

Google Scholar 
Tang, Y. et al. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem. 86(9), 4528–4535 (2014).Article 
CAS 
PubMed 

Google Scholar 
Lu, L., Zhang, J. & Yang, X. Simple and selective colorimetric detection of hypochlorite based on anti-aggregation of gold nanoparticles. Sens. Actuators B Chem. 184, 189–195 (2013).Article 
ADS 
CAS 

Google Scholar 
Tomei, M. R. et al. Carbon black-based disposable sensor for an on-site detection of free chlorine in swimming pool water. Talanta 189, 262–267 (2018).Article 
CAS 
PubMed 

Google Scholar 
Salazar, P. et al. A novel and improved surfactant-modified Prussian Blue electrode for amperometric detection of free chlorine in water. Sens. Actuators B Chem. 213, 116–123 (2015).Article 
ADS 
CAS 

Google Scholar 
Kodera, F. et al. Electrochemical detection of free chlorine using anodic current. Jpn. J. Appl. Phys. 43(7A), L913 (2004).Article 
ADS 
CAS 

Google Scholar 
Murata, M. et al. Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. J. Electroanal. Chem. 612(1), 29–36 (2008).Article 
CAS 

Google Scholar 
Yin, J. et al. A batch microfabrication of a self-cleaning, ultradurable electrochemical sensor employing a BDD film for the online monitoring of free chlorine in tap water. Microsyst. Nanoeng. 8(1), 39 (2022).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chiang, Y.-T. et al. A conductive silver membrane for electrochemical detection of free chlorine in aqueous solution. Sens. Actuators B Chem. 348, 130724 (2021).Article 
CAS 

Google Scholar 
Moghzi, F. et al. Sensitizing, sensing and chemical separation of Tb (III) ions: All in a novel copper metal-organic framework. Mater. Res. Bull. 122, 110683 (2020).Article 
CAS 

Google Scholar 
Li, B. et al. Porous metal–organic frameworks for gas storage and separation: What, how, and why?. J. Phys. Chem. Lett. 5(20), 3468–3479 (2014).Article 
CAS 
PubMed 

Google Scholar 
Gu, A. et al. The preparation of Ag/ZIF-8@ ZIF-67 core-shell composites as excellent catalyst for degradation of the nitroaromatic compounds. Appl. Surf. Sci. 516, 146160 (2020).Article 
CAS 

Google Scholar 
He, X. et al. Interconnected 3D Fe3O4/rGO as highly durable electrocatalyst for oxygen reduction reaction. J. Alloys Compd. 855, 157422 (2021).Article 
CAS 

Google Scholar 
Hosseini, H. et al. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine. Biosens. Bioelectron. 42, 426–429 (2013).Article 
CAS 
PubMed 

Google Scholar 
Lustig, W. P. et al. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46(11), 3242–3285 (2017).Article 
CAS 
PubMed 

Google Scholar 
Kabir, H. et al. Electrochemical determination of free chlorine on pseudo-graphite electrode. Talanta 205, 120101 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chidambaram, A. & Stylianou, K. C. Electronic metal–organic framework sensors. Inorg. Chem. Front. 5(5), 979–998 (2018).Article 
CAS 

Google Scholar 
Nandi, S. & Biswas, S. A diamino functionalized metal-organic framework for fluorometric recognition of free chlorine in environmental water samples. Microporous Mesoporous Mater. 299, 110116 (2020).Article 
CAS 

Google Scholar 
Habibi, B. et al. Copper/zeolitic imidazolate framework-8 integrated by boron nitride as an electrocatalyst at the glassy carbon electrode to sensing of the clopidogrel. J. Solid State Chem. 323, 123982 (2023).Article 
CAS 

Google Scholar 
Habibi, B., Pashazadeh, A. & Saghatforoush, L. A. Zn-mesoporous metal-organic framework incorporated with copper ions modified glassy carbon electrode: Electrocatalytic oxidation and determination of amoxicillin. Microchem. J. 164, 106011 (2021).Article 
CAS 

Google Scholar 
Dong, S. et al. A simple strategy to fabricate high sensitive 2, 4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sens. Actuators B Chem. 222, 972–979 (2016).Article 
ADS 
CAS 

Google Scholar 
Li, J. et al. An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 181, 80–86 (2018).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Xu, X. & Chen, L. An ultrasensitive electrochemical bisphenol A sensor based on hierarchical Ce-metal-organic framework modified with cetyltrimethylammonium bromide. Sens. Actuators B Chem. 261, 425–433 (2018).Article 
ADS 
CAS 

Google Scholar 
Habibi, B. et al. A new method for the preparation of MgAl layered double hydroxide-copper metal–organic frameworks structures: Application to electrocatalytic oxidation of formaldehyde. Sci. Rep. 14(1), 5222 (2024).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Habibi, B. & Pashazadeh, S. Fabrication, characterization and performance evaluation of an amplified electrochemical sensor based on MOFs nanocomposite for leukemia drug Imatinib determination. Sens. Bio-Sens. Res. 42, 100604 (2023).Article 

Google Scholar 
Wang, M.-Q. et al. Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids. Analyst 141(4), 1279–1285 (2016).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Xu, Z., Yang, L. & Xu, C. Pt@ UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 87(6), 3438–3444 (2015).Article 
CAS 
PubMed 

Google Scholar 
Yu, Y. et al. Target triggered cleavage effect of DNAzyme: Relying on Pd-Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens. Bioelectron. 101, 297–303 (2018).Article 
CAS 
PubMed 

Google Scholar 
Cruz-Navarro, J. A., Hernandez-Garcia, F. & Romero, G. A. A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev. 412, 213263 (2020).Article 
CAS 

Google Scholar 
Alizadeh, N., Salimi, A. & Sham, T.-K. CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device. Microchim. Acta 188(7), 1–11 (2021).Article 

Google Scholar 
Dong, Q., Ryu, H. & Lei, Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta 370, 137744 (2021).Article 
CAS 

Google Scholar 
Tu, X. et al. Self-template synthesis of flower-like hierarchical graphene/copper oxide@ copper (II) metal-organic framework composite for the voltammetric determination of caffeic acid. Microchim. Acta 187(5), 1–8 (2020).Article 
ADS 

Google Scholar 
Lee, Y.-R. et al. ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 271, 276–280 (2015).Article 
ADS 
CAS 

Google Scholar 
Van Tran, T. et al. Microwave-assisted solvothermal fabrication of hybrid zeolitic–imidazolate framework (ZIF-8) for optimizing dyes adsorption efficiency using response surface methodology. J. Environ. Chem. Eng. 8(4), 104189 (2020).Article 
CAS 

Google Scholar 
Wang, Y., Wang, F. & Zhang, J. Fast synthesis of hybrid zeolitic imidazolate frameworks (HZIFs) with exceptional acid–base stability from ZIF-8 precursors. Crystal Growth Des. 19(6), 3430–3434 (2019).Article 
CAS 

Google Scholar 
Habibi, B. et al. A thioridazine hydrochloride electrochemical sensor based on zeolitic imidazolate framework-67-functionalized bio-mobile crystalline material-41 carbon quantum dots. New J. Chem. 45(32), 14739–14750 (2021).Article 
CAS 

Google Scholar 
Qiang, Z. & Adams, C. D. Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environ. Sci. Technol. 38(5), 1435–1444 (2004).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Huo, Q. et al. Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization. Chem. Eng. J. 378, 122106 (2019).Article 
CAS 

Google Scholar 
Chakraborty, A., Islam, D. A. & Acharya, H. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. J. Solid State Chem. 269, 566–574 (2019).Article 
ADS 
CAS 

Google Scholar 
Venna, S. R., Jasinski, J. B. & Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132(51), 18030–18033 (2010).Article 
CAS 
PubMed 

Google Scholar 
Hu, Y. et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 47(47), 12694–12696 (2011).Article 
CAS 

Google Scholar 
Tuncel, D. & Ökte, A. Improved adsorption capacity and photoactivity of ZnO-ZIF-8 nanocomposites. Catal. Today 361, 191–197 (2021).Article 
CAS 

Google Scholar 
Zhao, N. et al. Tailor made CuO/ZIF-8 hybrid structure as a potential candidate for thermocatalytic degradation of nitrocellulose. Thermochim. Acta 707, 179101 (2022).Article 
CAS 

Google Scholar 
Muñoz, J., Céspedes, F. & Baeza, M. Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine. Microchem. J. 122, 189–196 (2015).Article 

Google Scholar 
Watanabe, T., Akai, K. & Einaga, Y. The reduction behavior of free chlorine at boron-doped diamond electrodes. Electrochem. Commun. 70, 18–22 (2016).Article 
CAS 

Google Scholar 
Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1(3), 1–15 (2016).Article 

Google Scholar 
Bard, A. J. & Faulkner, L. R. Fundamentals and Applications, New York: Wiley, 2001 (Springer, 2002).
Google Scholar 
Pathiratne, K., Skandaraja, S. & Jayasena, E. Linear sweep voltammetric determination of free chlorine in waters using graphite working electrodes. J. Natl. Sci. Found. Sri Lanka 36(1), 25–31 (2008).Article 
CAS 

Google Scholar 
Olivé-Monllau, R. et al. Flow injection analysis system based on amperometric thin-film transducers for free chlorine detection in swimming pool waters. Talanta 77(5), 1739–1744 (2009).Article 
PubMed 

Google Scholar 
Senthilkumar, K. & Zen, J.-M. Free chlorine detection based on EC’mechanism at an electroactive polymelamine-modified electrode. Electrochem. Commun. 46, 87–90 (2014).Article 
CAS 

Google Scholar 
Salazar, P. et al. Application of Prussian blue electrodes for amperometric detection of free chlorine in water samples using flow injection analysis. Talanta 146, 410–416 (2016).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles