Blood metabolites mediate effects of breakfast skipping on heart failure via Mendelian randomization analysis

Martin, S. S. et al. 2024 Heart disease and stroke statistics: A report of US and global data from the American heart association. Circulation 149, e347–e913. https://doi.org/10.1161/cir.0000000000001209 (2024).Article 
PubMed 

Google Scholar 
Baman, J. R. & Ahmad, F. S. Heart failure. Jama 324, 1015. https://doi.org/10.1001/jama.2020.13310 (2020).Article 
PubMed 

Google Scholar 
Bonnet, J. P., Cardel, M. I., Cellini, J., Hu, F. B. & Guasch-Ferré, M. Breakfast skipping, body composition, and cardiometabolic risk: A systematic review and meta-analysis of randomized trials. Obesity (Silver Spring) 28, 1098–1109. https://doi.org/10.1002/oby.22791 (2020).Article 
CAS 
PubMed 

Google Scholar 
Santos, H. O., Genario, R., Macedo, R. C. O., Pareek, M. & Tinsley, G. M. Association of breakfast skipping with cardiovascular outcomes and cardiometabolic risk factors: An updated review of clinical evidence. Crit. Rev. Food Sci. Nutr. 62, 466–474. https://doi.org/10.1080/10408398.2020.1819768 (2022).Article 
CAS 
PubMed 

Google Scholar 
Gibney, M. J. et al. Breakfast in human nutrition: The international breakfast research initiative. Nutrients https://doi.org/10.3390/nu10050559 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Pengpid, S. & Peltzer, K. Prevalence and associated factors of skipping breakfast among university students from 28 countries: A cross-sectional study. Int. J. Adolesc. Med. Health 34, 97–103. https://doi.org/10.1515/ijamh-2019-0256 (2020).Article 
PubMed 

Google Scholar 
Chen, H. et al. Association between skipping breakfast and risk of cardiovascular disease and all cause mortality: A meta-analysis. Clin. Nutr. 39, 2982–2988. https://doi.org/10.1016/j.clnu.2020.02.004 (2020).Article 
ADS 
PubMed 

Google Scholar 
Kaneko, H. et al. Possible association between eating behaviors and cardiovascular disease in the general population: Analysis of a nationwide epidemiological database. Atherosclerosis 320, 79–85. https://doi.org/10.1016/j.atherosclerosis.2021.01.022 (2021).Article 
CAS 
PubMed 

Google Scholar 
Djoussé, L. & Gaziano, J. M. Breakfast cereals and risk of heart failure in the physicians’ health study I. Arch. Intern. Med. 167, 2080–2085. https://doi.org/10.1001/archinte.167.19.2080 (2007).Article 
PubMed 

Google Scholar 
Ballon, A., Neuenschwander, M. & Schlesinger, S. Breakfast skipping is associated with increased risk of type 2 diabetes among adults: A systematic review and meta-analysis of prospective cohort studies. J. Nutr. 149, 106–113. https://doi.org/10.1093/jn/nxy194 (2019).Article 
PubMed 

Google Scholar 
Aune, D. et al. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 28, 1081–1091. https://doi.org/10.1016/j.numecd.2018.07.005 (2018).Article 
CAS 
PubMed 

Google Scholar 
Schubert, J. et al. Low-density lipoprotein cholesterol reduction and statin intensity in myocardial infarction patients and major adverse outcomes: A Swedish nationwide cohort study. Eur. Heart J. 42, 243–252. https://doi.org/10.1093/eurheartj/ehaa1011 (2021).Article 
CAS 
PubMed 

Google Scholar 
Swanson, S. A., Tiemeier, H., Ikram, M. A. & Hernán, M. A. Nature as a Trialist?: Deconstructing the analogy between mendelian randomization and randomized trials. Epidemiology 28, 653–659. https://doi.org/10.1097/ede.0000000000000699 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Burgess, S. & Thompson, S. G. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation (CRC Press, Boca Raton, 2015).Book 

Google Scholar 
Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. Jama 318, 1925–1926. https://doi.org/10.1001/jama.2017.17219 (2017).Article 
PubMed 

Google Scholar 
Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355. https://doi.org/10.1177/0962280215597579 (2017).Article 
MathSciNet 
PubMed 

Google Scholar 
Corbin, L. J. et al. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat. Commun. 9, 711. https://doi.org/10.1038/s41467-018-03109-y (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Schafer, J. L. Multiple imputation: A primer. Stat. Methods Med. Res. 8, 3–15. https://doi.org/10.1177/096228029900800102 (1999).Article 
CAS 
PubMed 

Google Scholar 
Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295. https://doi.org/10.1177/0962280210395740 (2013).Article 
MathSciNet 
PubMed 

Google Scholar 
Dashti, H. S. et al. Genome-wide association study of breakfast skipping links clock regulation with food timing. Am. J. Clin. Nutr. 110, 473–484. https://doi.org/10.1093/ajcn/nqz076 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
Julkunen, H. et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 14, 604. https://doi.org/10.1038/s41467-023-36231-7 (2023).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163. https://doi.org/10.1038/s41467-019-13690-5 (2020).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Fang, P. et al. Exploring causal correlations between inflammatory cytokines and ankylosing spondylitis: A bidirectional mendelian-randomization study. Front. Immunol. 14, 1285106. https://doi.org/10.3389/fimmu.2023.1285106 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meijers, W. C. & de Boer, R. A. Common risk factors for heart failure and cancer. Cardiovasc. Res. 115, 844–853. https://doi.org/10.1093/cvr/cvz035 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Larsson, S. C., Wallin, A. & Wolk, A. Alcohol consumption and risk of heart failure: Meta-analysis of 13 prospective studies. Clin. Nutr. 37, 1247–1251. https://doi.org/10.1016/j.clnu.2017.05.007 (2018).Article 
CAS 
PubMed 

Google Scholar 
Aune, D. et al. Body mass index, abdominal fatness, and heart failure incidence and mortality: A systematic review and dose-response meta-analysis of prospective studies. Circulation 133, 639–649. https://doi.org/10.1161/circulationaha.115.016801 (2016).Article 
PubMed 

Google Scholar 
Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752. https://doi.org/10.1093/ije/dyq151 (2011).Article 
PubMed 

Google Scholar 
Varbo, A. et al. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease. Circ. Res. 116, 665–673. https://doi.org/10.1161/circresaha.116.304846 (2015).Article 
CAS 
PubMed 

Google Scholar 
Lee, C. H., Cook, S., Lee, J. S. & Han, B. Comparison of two meta-analysis methods: Inverse-variance-weighted average and weighted sum of Z-scores. Genom. Inf. 14, 173–180. https://doi.org/10.5808/gi.2016.14.4.173 (2016).Article 

Google Scholar 
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314. https://doi.org/10.1002/gepi.21965 (2016).Article 
PubMed 
PubMed Central 

Google Scholar 
Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389. https://doi.org/10.1007/s10654-017-0255-x (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Zou, X. L. et al. Childhood obesity and risk of stroke: A mendelian randomisation analysis. Front. Genet. 12, 727475. https://doi.org/10.3389/fgene.2021.727475 (2021).Article 
PubMed 
PubMed Central 

Google Scholar 
Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42, 1497–1501. https://doi.org/10.1093/ije/dyt179 (2013).Article 
PubMed 

Google Scholar 
Noble, W. S. How does multiple testing correction work?. Nat. Biotechnol. 27, 1135–1137. https://doi.org/10.1038/nbt1209-1135 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Takagi, H., Hari, Y., Nakashima, K., Kuno, T. & Ando, T. Meta-analysis of relation of skipping breakfast with heart disease. Am. J. Cardiol. 124, 978–986. https://doi.org/10.1016/j.amjcard.2019.06.016 (2019).Article 
PubMed 

Google Scholar 
Li, Z. H., Xu, L., Dai, R., Li, L. J. & Wang, H. J. Effects of regular breakfast habits on metabolic and cardiovascular diseases: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 100, e27629. https://doi.org/10.1097/md.0000000000027629 (2021).Article 
PubMed 

Google Scholar 
Rong, S. et al. Association of skipping breakfast with cardiovascular and all-cause mortality. J. Am. Coll. Cardiol. 73, 2025–2032. https://doi.org/10.1016/j.jacc.2019.01.065 (2019).Article 
PubMed 

Google Scholar 
Li, Z., Li, H., Xu, Q. & Long, Y. Skipping breakfast is associated with hypertension in adults: A meta-analysis. Int. J. Hypertens. 2022, 7245223. https://doi.org/10.1155/2022/7245223 (2022).Article 
PubMed 
PubMed Central 

Google Scholar 
Wicherski, J., Schlesinger, S. & Fischer, F. Association between breakfast skipping and body weight-a systematic review and meta-analysis of observational longitudinal studies. Nutrients 13, 1–272. https://doi.org/10.3390/nu13010272 (2021).Article 

Google Scholar 
Sharma, K., Shah, K., Brahmbhatt, P. & Kandre, Y. Skipping breakfast and the risk of coronary artery disease. Qjm 111, 715–719. https://doi.org/10.1093/qjmed/hcy162 (2018).Article 
CAS 
PubMed 

Google Scholar 
Richard, C. & Calder, P. C. Docosahexaenoic acid. Adv. Nutr. 7, 1139–1141. https://doi.org/10.3945/an.116.012963 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Gwin, J. A. & Leidy, H. J. Breakfast consumption augments appetite, eating behavior, and exploratory markers of sleep quality compared with skipping breakfast in healthy young adults. Curr. Dev. Nutr. 2, nyz074. https://doi.org/10.1093/cdn/nzy074 (2018).Article 

Google Scholar 
Clayton, D. J. & James, L. J. The effect of breakfast on appetite regulation, energy balance and exercise performance. Proc. Nutr. Soc. 75, 319–327. https://doi.org/10.1017/s0029665115004243 (2016).Article 
CAS 
PubMed 

Google Scholar 
Keski-Rahkonen, A., Kaprio, J., Rissanen, A., Virkkunen, M. & Rose, R. J. Breakfast skipping and health-compromising behaviors in adolescents and adults. Eur. J. Clin. Nutr. 57, 842–853. https://doi.org/10.1038/sj.ejcn.1601618 (2003).Article 
CAS 
PubMed 

Google Scholar 
Zhu, S. et al. Habitually skipping breakfast is associated with chronic inflammation: A cross-sectional study. Public Health Nutr. 24, 2936–2943. https://doi.org/10.1017/s1368980020001214 (2021).Article 
PubMed 

Google Scholar 
Rimm, E. B. et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: A science advisory from the American heart association. Circulation 138, e35–e47. https://doi.org/10.1161/cir.0000000000000574 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
McLennan, P. L. Myocardial membrane fatty acids and the antiarrhythmic actions of dietary fish oil in animal models. Lipids 36(Suppl), S111-114. https://doi.org/10.1007/s11745-001-0692-x (2001).Article 
CAS 
PubMed 

Google Scholar 
Li, G. R. et al. Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+currents and Na+current in human atrial myocytes. Cardiovasc. Res. 81, 286–293. https://doi.org/10.1093/cvr/cvn322 (2009).Article 
CAS 
PubMed 

Google Scholar 
Li, K., Huang, T., Zheng, J., Wu, K. & Li, D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: A meta-analysis. PLoS One 9, e88103. https://doi.org/10.1371/journal.pone.0088103 (2014).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Liu, R. et al. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J. Nutr. Biochem. 88, 108503. https://doi.org/10.1016/j.jnutbio.2020.108503 (2021).Article 
CAS 
PubMed 

Google Scholar 
Harris, W. S. & Bulchandani, D. Why do omega-3 fatty acids lower serum triglycerides?. Curr. Opin. Lipidol. 17, 387–393. https://doi.org/10.1097/01.mol.0000236363.63840.16 (2006).Article 
CAS 
PubMed 

Google Scholar 
Siscovick, D. S. et al. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: A science advisory from the American heart association. Circulation 135, e867–e884. https://doi.org/10.1161/cir.0000000000000482 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sakamoto, A., Saotome, M., Iguchi, K. & Maekawa, Y. Marine-derived omega-3 polyunsaturated fatty acids and heart failure: Current understanding for basic to clinical relevance. Int. J. Mol. Sci. 20, 4025. https://doi.org/10.3390/ijms20164025 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Oikonomou, E. et al. Effects of omega-3 polyunsaturated fatty acids on fibrosis, endothelial function and myocardial performance, in ischemic heart failure patients. Clin. Nutr. 38, 1188–1197. https://doi.org/10.1016/j.clnu.2018.04.017 (2019).Article 
CAS 
PubMed 

Google Scholar 
Chrysohoou, C. et al. Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; a randomized clinical trial. Vascul. Pharmacol. 79, 43–50. https://doi.org/10.1016/j.vph.2016.01.005 (2016).Article 
CAS 
PubMed 

Google Scholar 
Nomali, M. et al. Omega-3 supplementation and outcomes of heart failure: A systematic review of clinical trials. Medicine (Baltimore) 103, e36804. https://doi.org/10.1097/md.0000000000036804 (2024).Article 
PubMed 

Google Scholar 
Jakubowicz, D. et al. Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: A randomized clinical trial. Diabetes Care 40, 1573–1579. https://doi.org/10.2337/dc16-2753 (2017).Article 
CAS 
PubMed 

Google Scholar 
Deshmukh-Taskar, P., Nicklas, T. A., Radcliffe, J. D., O’Neil, C. E. & Liu, Y. The relationship of breakfast skipping and type of breakfast consumed with overweight/obesity, abdominal obesity, other cardiometabolic risk factors and the metabolic syndrome in young adults. The national health and nutrition examination survey (NHANES): 1999-2006. Public Health Nutr. 16, 2073–2082. https://doi.org/10.1017/s1368980012004296 (2013).Article 
PubMed 

Google Scholar 
Witbracht, M., Keim, N. L., Forester, S., Widaman, A. & Laugero, K. Female breakfast skippers display a disrupted cortisol rhythm and elevated blood pressure. Physiol. Behav. 140, 215–221. https://doi.org/10.1016/j.physbeh.2014.12.044 (2015).Article 
CAS 
PubMed 

Google Scholar 
Haidara, M. A., Yassin, H. Z., Rateb, M., Ammar, H. & Zorkani, M. A. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr. Vasc. Pharmacol. 4, 215–227. https://doi.org/10.2174/157016106777698469 (2006).Article 
CAS 
PubMed 

Google Scholar 
Gamrat, A., Surdacki, M. A., Chyrchel, B. & Surdacki, A. Endothelial dysfunction: A contributor to adverse cardiovascular remodeling and heart failure development in type 2 diabetes beyond accelerated atherogenesis. J. Clin. Med. 9, 2090. https://doi.org/10.3390/jcm9072090 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070. https://doi.org/10.1161/circresaha.110.223545 (2010).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Frati, G. et al. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res. 113, 378–388. https://doi.org/10.1093/cvr/cvx011 (2017).Article 
CAS 
PubMed 

Google Scholar 
Li, Y. et al. Relationship between skipping breakfast and impaired fasting glucose along with cardiovascular and pre-diabetes condition risk factors in apparently healthy subjects. Endocrinol. Stud. 1, e17–e17 (2011).Article 

Google Scholar 
Ballout, R. A. & Remaley, A. T. GlycA: A new biomarker for systemic inflammation and cardiovascular disease (CVD) risk assessment. J. Lab. Precis. Med. 5, 17. https://doi.org/10.21037/jlpm.2020.03.03 (2020).Article 
PubMed 
PubMed Central 

Google Scholar 
Connelly, M. A., Otvos, J. D., Shalaurova, I., Playford, M. P. & Mehta, N. N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 15, 219. https://doi.org/10.1186/s12967-017-1321-6 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shirazi, L. F., Bissett, J., Romeo, F. & Mehta, J. L. Role of inflammation in heart failure. Curr. Atheroscler. Rep. 19, 27. https://doi.org/10.1007/s11883-017-0660-3 (2017).Article 
CAS 
PubMed 

Google Scholar 
Halade, G. V. & Lee, D. H. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine 79, 103992. https://doi.org/10.1016/j.ebiom.2022.103992 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nas, A. et al. Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am. J. Clin. Nutr. 105, 1351–1361. https://doi.org/10.3945/ajcn.116.151332 (2017).Article 
CAS 
PubMed 

Google Scholar 
Akinkuolie, A. O., Buring, J. E., Ridker, P. M. & Mora, S. A novel protein glycan biomarker and future cardiovascular disease events. J. Am. Heart Assoc. 3, e001221. https://doi.org/10.1161/jaha.114.001221 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
Fizelova, M. et al. Differential associations of inflammatory markers with insulin sensitivity and secretion: The prospective METSIM study. J. Clin. Endocrinol. Metab. 102, 3600–3609. https://doi.org/10.1210/jc.2017-01057 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
Duprez, D. A. et al. Comparison of the predictive value of GlycA and other biomarkers of inflammation for total death, incident cardiovascular events, noncardiovascular and noncancer inflammatory-related events, and total cancer events. Clin. Chem. 62, 1020–1031. https://doi.org/10.1373/clinchem.2016.255828 (2016).Article 
CAS 
PubMed 

Google Scholar 
Jauhiainen, R. et al. Novel biomarkers associated with incident heart failure in 10 106 Finnish men. ESC Heart Fail. 8, 605–614. https://doi.org/10.1002/ehf2.13132 (2021).Article 
PubMed 

Google Scholar 
Guinter, M. A., Campbell, P. T., Patel, A. V. & McCullough, M. L. Irregularity in breakfast consumption and daily meal timing patterns in association with body weight status and inflammation. Br. J. Nutr. 122, 1192–1200. https://doi.org/10.1017/s0007114519002125 (2019).Article 
CAS 
PubMed 

Google Scholar 
Snipelisky, D., Chaudhry, S. P. & Stewart, G. C. The many faces of heart failure. Card. Electrophysiol. Clin. 11, 11–20. https://doi.org/10.1016/j.ccep.2018.11.001 (2019).Article 
PubMed 

Google Scholar 
Forouhi, N. G., Misra, A., Mohan, V., Taylor, R. & Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. Bmj 361, k2234. https://doi.org/10.1136/bmj.k2234 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Wronka, M., Krzemińska, J., Młynarska, E., Rysz, J. & Franczyk, B. The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes. Int. J. Mol. Sci. 23, 15743. https://doi.org/10.3390/ijms232415743 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Leung, M., Wong, V. W., Hudson, M. & Leung, D. Y. Impact of improved glycemic control on cardiac function in type 2 diabetes mellitus. Circ. Cardiovasc. Imaging 9, e003643. https://doi.org/10.1161/circimaging.115.003643 (2016).Article 
PubMed 

Google Scholar 
Chiesa, S. T. et al. Glycoprotein acetyls: A novel inflammatory biomarker of early cardiovascular risk in the young. J. Am. Heart Assoc. 11, e024380. https://doi.org/10.1161/jaha.121.024380 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Nestel, P. J. & Mori, T. A. Dietary patterns, dietary nutrients and cardiovascular disease. Rev. Cardiovasc. Med. 23, 17. https://doi.org/10.31083/j.rcm2301017 (2022).Article 
PubMed 

Google Scholar 
Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798. https://doi.org/10.1161/circresaha.118.313348 (2019).Article 
PubMed 

Google Scholar 
Liu, J. & Cai, D. Causal relationship of cereal intake and type with cardiovascular disease: A Mendelian randomization study. Front. Nutr. 10, 1320120. https://doi.org/10.3389/fnut.2023.1320120 (2023).Article 
CAS 
PubMed 

Google Scholar 
Zheng, Y. et al. Design and methodology challenges of environment-wide association studies: A systematic review. Environ. Res. 183, 109275. https://doi.org/10.1016/j.envres.2020.109275 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hot Topics

Related Articles