Infrared spectral library of tooth enamel from African ungulates for accurate electron spin resonance dating

Grün, R. & Stringer, C. Direct dating of human fossils and the ever-changing story of human evolution. Quaternary Science Reviews 322, 108379, https://doi.org/10.1016/j.quascirev.2023.108379 (2023).Article 

Google Scholar 
Grine, F. E. in Africa from MIS 6-2 (eds Jones, S. C. & Stewart, B. A.) 323–382 (Springer, 2016).Richard, M. in Handbook of Archaeological Sciences 69–87 (2023).Ikeya, M. New applications of electron spin resonance: dating, dosimetry and microscopy. (World Scientific, 1993).Pons-Branchu, E. in Handbook of Archaeological Sciences 89–97 (2023).Ivanovich, M. & Harmon, R. S. Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2nd edn, (Clarendon Press, 1992).Grün, R., Schwarcz, H. P. & Chadam, J. ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14, 237–241, https://doi.org/10.1016/1359-0189(88)90071-4 (1988).Article 

Google Scholar 
Richard, M. et al. New electron spin resonance (ESR) ages from Geißenklösterle Cave: A chronological study of the Middle and early Upper Paleolithic layers. Journal of Human Evolution 133, 133–145, https://doi.org/10.1016/j.jhevol.2019.05.014 (2019).Article 
PubMed 

Google Scholar 
Richard, M. et al. Investigating the effect of diagenesis on ESR dating of Middle Stone Age tooth samples from the open-air site of Lovedale, Free State, South Africa. Quaternary Geochronology 69, 101269, https://doi.org/10.1016/j.quageo.2022.101269 (2022).Article 

Google Scholar 
Weiner, S. Microarchaeology. Beyond the Visible Archaeological Record. (Cambridge University Press, 2010).Dal Sasso, G., Asscher, Y., Angelini, I., Nodari, L. & Artioli, G. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation. Scientific Reports 8, 12025, https://doi.org/10.1038/s41598-018-30642-z (2018).Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Asscher, Y., Weiner, S. & Boaretto, E. Variations in Atomic Disorder in Biogenic Carbonate Hydroxyapatite Using the Infrared Spectrum Grinding Curve Method. Advanced Functional Materials 21, 3308–3313, https://doi.org/10.1002/adfm.201100266 (2011).Article 
CAS 

Google Scholar 
Asscher, Y., Regev, L., Weiner, S. & Boaretto, E. Atomic Disorder in Fossil Tooth and Bone Mineral: An FTIR Study Using the Grinding Curve Method. ArcheoSciences 35, 135–141, https://doi.org/10.4000/archeosciences.3062 (2011).Article 

Google Scholar 
Richard, M. et al. New ESR dates from Lovedale, Free State, South Africa: implications for the study of tooth diagenesis. South African Archaeological Bulletin 78, 95–103, https://cnrs.hal.science/hal-04378183/file/RICHARD%20et%20al._2023_SAAB.pdf (2023).
Google Scholar 
Duval, M. et al. The first direct ESR dating of a hominin tooth from Atapuerca Gran Dolina TD-6 (Spain) supports the antiquity of Homo antecessor. Quaternary Geochronology 47, 120–137, https://doi.org/10.1016/j.quageo.2018.05.001 (2018).Article 

Google Scholar 
Joannes-Boyau, R. Detailed protocol for an accurate non-destructive direct dating of tooth enamel fragment using Electron Spin Resonance. Geochronometria 40, 322–333, https://doi.org/10.2478/s13386-013-0132-7 (2013).Article 
CAS 

Google Scholar 
Grün, R. Semi non-destructive, single aliquot ESR dating. Ancient TL 13, 7 (1995).
Google Scholar 
Grün, R. et al. Direct dating of Florisbad hominid. Nature 382, 500–501, https://doi.org/10.1038/382500a0 (1996).Article 
ADS 
PubMed 

Google Scholar 
Grün, R. & Beaumont, P. Border Cave revisited: a revised ESR chronology. Journal of Human Evolution 40, 467–482, https://doi.org/10.1006/jhev.2001.0471 (2001).Article 
PubMed 

Google Scholar 
Val, A. et al. The place beyond the trees: renewed excavations of the Middle Stone Age deposits at Olieboomspoort in the Waterberg Mountains of the South African Savanna Biome. Archaeological and Anthropological Sciences 13, 116, https://doi.org/10.1007/s12520-021-01302-7 (2021).Article 

Google Scholar 
Richard, M. et al. Contribution of ESR/U-series dating to the chronology of late Middle Palaeolithic sites in the middle Rhône valley, southeastern France. Quaternary Geochronology 30, 529–534, https://doi.org/10.1016/j.quageo.2015.06.002 (2015).Article 

Google Scholar 
Richard, M. et al. ESR/U-series chronology of early Neanderthal occupations at Cova Negra (Valencia, Spain). Quaternary Geochronology 49, 283–290, https://doi.org/10.1016/j.quageo.2018.05.004 (2019).Article 

Google Scholar 
Falguères, C. et al. ESR/U-series dates on Equus teeth from the Middle Pleistocene Acheulean site of Cueva del Angel, Spain. Quaternary Geochronology 49, 297–302, https://doi.org/10.1016/j.quageo.2018.02.003 (2019).Article 

Google Scholar 
Bahain, J.-J. et al. ESR/U-series dating of faunal remains from the paleoanthropological site of Biache-Saint-Vaast (Pas-de-Calais, France). Quaternary Geochronology 30, 541–546, https://doi.org/10.1016/j.quageo.2015.02.020 (2015).Article 

Google Scholar 
Duval, M. et al. On the limits of using combined U-series/ESR method to date fossil teeth from two Early Pleistocene archaeological sites of the Orce area (Guadix-Baza basin, Spain). Quaternary Research 77, 482–491, https://doi.org/10.1016/j.yqres.2012.01.003 (2017).Article 
ADS 
CAS 

Google Scholar 
Van Couvering, J. A. & Delson, E. African Land Mammal Ages. Journal of Vertebrate Paleontology 40, e1803340, https://doi.org/10.1080/02724634.2020.1803340 (2020).Article 

Google Scholar 
Brink, J. S. in Quaternary Environmental Change in Southern Africa: Physical and Human Dimensions (eds Knight, J. & Grab, S. W.) 284–305 (Cambridge University Press, 2016).Codron, D., Brink, J. S., Rossouw, L. & Clauss, M. The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover? Oikos 117, 344–353, https://doi.org/10.1111/j.2007.0030-1299.16387.x (2008).Article 
ADS 

Google Scholar 
Brink, J. S. & Lee-Thorp, J. A. The feeding niche of an extinct springbok, Antidorcas bondi (Antelopini, Bovidae), and its palaeoenvironmental meaning. South African Journal of Science 88, 227–229, https://hdl.handle.net/10520/AJA00382353_9466 (1992).
Google Scholar 
Brink, J. S. The archaeozoology of Florisbad, Orange Free State. Memoirs van die Nasionale Museum, Bloemfontein 24, 1–151 (1987).
Google Scholar 
Brink, J. S. et al. First hominine remains from a ~1.0 million year old bone bed at Cornelia-Uitzoek, Free State Province, South Africa. Journal of Human Evolution 63, 527–535, https://doi.org/10.1016/j.jhevol.2012.06.004 (2012).Article 
PubMed 

Google Scholar 
Weiner, S. & Bar-Yosef, O. States of Preservation of Bones from Prehistoric Sites in the Near East: A Survey. Journal of Archaeological Science 17, 187–196, https://doi.org/10.1016/0305-4403(90)90058-D (1990).Article 

Google Scholar 
Toffolo, M. Enamel African ungulates. Zenodo https://doi.org/10.5281/zenodo.10980093 (2024).Regev, L., Poduska, K. M., Addadi, L., Weiner, S. & Boaretto, E. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. Journal of Archaeological Science 37, 3022–3029, https://doi.org/10.1016/j.jas.2010.06.027 (2010).Article 

Google Scholar 
Toffolo, M. B., Regev, L., Dubernet, S., Lefrais, Y. & Boaretto, E. FTIR-Based Crystallinity Assessment of Aragonite–Calcite Mixtures in Archaeological Lime Binders Altered by Diagenesis. Minerals 9, 121, https://doi.org/10.3390/min9020121 (2019).Article 
ADS 
CAS 

Google Scholar 
Wroth, K. et al. Human occupation of the semi-arid grasslands of South Africa during MIS 4: New archaeological and paleoecological evidence from Lovedale, Free State. Quaternary Science Reviews 283, 107455, https://doi.org/10.1016/j.quascirev.2022.107455 (2022).Article 

Google Scholar 
Rink, W. J. et al. Age of the Mousterian industry at Hayonim Cave, Northern Israel, using electron spin resonance and 230Th/234U methods. Journal of Archaeological Science 31, 953–964, https://doi.org/10.1016/j.jas.2003.12.009 (2004).Article 

Google Scholar 
Weiner, S., Goldberg, P. & Bar-Yosef, O. Three-dimensional Distribution of Minerals in the Sediments of Hayonim Cave, Israel: Diagenetic Processes and Archaeological Implications. Journal of Archaeological Science 29, 1289–1308, https://doi.org/10.1006/jasc.2001.0790 (2002).Article 

Google Scholar 
Mercier, N. et al. Thermoluminescence Dating and the Problem of Geochemical Evolution of Sediments – A Case Study: The Mousterian Levels at Hayonim. Israel Journal of Chemistry 35, 137–141, https://doi.org/10.1002/ijch.199500021 (1995).Article 
CAS 

Google Scholar 
Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in Prehistoric Caves: the Use of Minerals that Form In Situ to Assess the Completeness of the Archaeological Record. Journal of Archaeological Science 27, 915–929, https://doi.org/10.1006/jasc.1999.0506 (2000).Article 

Google Scholar 
Lebon, M., Zazzo, A. & Reiche, I. Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 110–119, https://doi.org/10.1016/j.palaeo.2014.08.001 (2014).Article 
ADS 

Google Scholar 
Dauphin, Y. et al. Diagenetic alterations of Meriones incisors (Rodentia) of El Harhoura 2 cave, Morocco (late Pleistocene–middle Holocene). PalZ 92, 163–177, https://doi.org/10.1007/s12542-017-0382-4 (2018).Article 

Google Scholar 
Dal Sasso, G., Angelini, I., Maritan, L. & Artioli, G. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. Talanta 179, 167–176, https://doi.org/10.1016/j.talanta.2017.10.059 (2018).Article 
CAS 
PubMed 

Google Scholar 
Sponheimer, M. & Lee-Thorp, J. A. Alteration of Enamel Carbonate Environments during Fossilization. Journal of Archaeological Science 26, 143–150, https://doi.org/10.1006/jasc.1998.0293 (1999).Article 

Google Scholar 

Hot Topics

Related Articles