Synthesis of chiral carbocycles via enantioselective β,γ-dehydrogenation

Turlik, A., Chen, Y. & Newhouse, T. R. Dehydrogenation adjacent to carbonyls using palladium–allyl intermediates. Synlett 27, 331–336 (2016).CAS 

Google Scholar 
Sharpless, K. B., Lauer, R. F. & Teranishi, A. Y. Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 95, 6137–6139 (1973).Article 
CAS 

Google Scholar 
Diao, T., Pun, D. & Stahl, S. S. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. J. Am. Chem. Soc. 135, 8205–8212 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, M. & Dong, G. Copper-catalyzed desaturation of lactones, lactams, and ketones under pH-neutral conditions. J. Am. Chem. Soc. 141, 14889–14897 (2019).Article 
CAS 
PubMed 

Google Scholar 
Teskey, C. J., Adler, P., Gonçalves, C. R. & Maulide, N. Chemoselective α,β‐dehydrogenation of saturated amides. Angew. Chem. Int. Ed. 58, 447–451 (2019).Article 
CAS 

Google Scholar 
Chen, Y., Turlik, A. & Newhouse, T. R. Amide α,β-dehydrogenation using allyl–palladium catalysis and a hindered monodentate anilide. J. Am. Chem. Soc. 138, 1166–1169 (2016).Article 
CAS 
PubMed 

Google Scholar 
Wang, Z., He, Z., Zhang, L. & Huang, Y. Iridium-catalyzed aerobic α,β-dehydrogenation of γ,δ-unsaturated amides and acids: activation of both α- and β-C–H bonds through an allyl–iridium intermediate. J. Am. Chem. Soc. 140, 735–740 (2018).Article 
CAS 
PubMed 

Google Scholar 
Gnaim, S., Vantourout, J. C., Serpier, F., Echeverria, P.-G. & Baran, P. S. Carbonyl desaturation: where does catalysis stand. ACS. Catal. 11, 883–892 (2021).Article 
CAS 

Google Scholar 
Zhu, L., Zhang, L. & Luo, S. Catalytic desymmetrizing dehydrogenation of 4‐substituted cyclohexanones through enamine oxidation. Angew. Chem. Int. Ed. 57, 2253–2258 (2018).Article 
CAS 

Google Scholar 
Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C–H activation. Science 374, 1281–1285 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Sheng, T. et al. Synthesis of β,γ-unsaturated aliphatic acids via ligand-enabled dehydrogenation. J. Am. Chem. Soc. 145, 20951–20958 (2023).Article 
CAS 
PubMed 

Google Scholar 
Das, J. et al. Access to unsaturated bicyclic lactonesby overriding conventional C(sp3)–H site selectivity. Nat. Chem. 15, 1626–1635 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Shen, P.-X., Hu, L., Shao, Q., Hong, K. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H arylation of free carboxylic acids. J. Am. Chem. Soc. 140, 6545–6549 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, L. et al. Pd(II)‐catalyzed enantioselective C(sp3)–H activation/cross‐coupling reactions of free carboxylic acids. Angew. Chem. Int. Ed. 58, 2134–2138 (2019).Article 
CAS 

Google Scholar 
Zhang, T. et al. Enantioselective remote methylene C–H (hetero)arylation of cycloalkane carboxylic acids. Science 384, 793–798 (2024).Article 
CAS 
PubMed 

Google Scholar 
Jiang, X. & Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem. Rev. 113, 5515–5546 (2013).Article 
CAS 
PubMed 

Google Scholar 
Corey, E. J. Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Ed. 41, 1650–1667 (2002).Article 
CAS 

Google Scholar 
Kagan, H. B. & Riant, O. Catalytic asymmetric Diels Alder reactions. Chem. Rev. 92, 1007–1019 (1992).Article 
CAS 

Google Scholar 
Mackay, E. G. & Sherburn, M. S. The Diels–Alder reaction in steroid synthesis. Synthesis 47, 1–21 (2014).Article 

Google Scholar 
Sheng, T. et al. One-step synthesis of β-alkylidene-γ-lactones via ligand-enabled β,γ-dehydrogenation of aliphatic acids. J. Am. Chem. Soc. 144, 12924–12933 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Kang, G., Strassfeld, D. A., Sheng, T., Chen, C.-Y. & Yu, J.-Q. Transannular C–H functionalization of cycloalkane carboxylic acids. Nature 618, 519–525 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ammazzalorso, A., De Filippis, B., Giampietro, L. & Amoroso, R. N‐acylsulfonamides: synthetic routes and biological potential in medicinal chemistry. Chem. Biol. Drug Des. 90, 1094–1105 (2017).Article 
CAS 
PubMed 

Google Scholar 
Ballatore, C., Huryn, D. M. & Smith, A. B. III Carboxylic acid (bio)isosteres in drug design. ChemMedChem 8, 385–395 (2013).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Meanwell, N. A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54, 2529–2591 (2011).Article 
CAS 
PubMed 

Google Scholar 
Stansfield, I. et al. Development of carboxylic acid replacements in indole-N-acetamide inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem. Lett. 17, 5143–5149 (2007).Article 
CAS 
PubMed 

Google Scholar 
Wu, K. et al. Palladium(II)‐catalyzed C–H activation with bifunctional ligands: from curiosity to industrialization. Angew. Chem. Int. Ed. 63, e202400509 (2024).Article 
CAS 

Google Scholar 
Lucas, E. L. et al. Palladium-catalyzed enantioselective β-C(sp3)–H activation reactions of aliphatic acids: a retrosynthetic surrogate for enolate alkylation and conjugate addition. Acc. Chem. Res. 55, 537–550 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
He, J., Shao, Q., Wu, Q. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 139, 3344–3347 (2017).Article 
CAS 
PubMed 

Google Scholar 
Zhuang, Z. & Yu, J.-Q. Pd(II)-catalyzed enantioselective γ-C(sp3)–H functionalizations of free cyclopropylmethylamines. J. Am. Chem. Soc. 142, 12015–12019 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, Q.-F. et al. Formation of α-chiral centers by asymmetric β-C(sp3)–H arylation, alkenylation, and alkynylation. Science 355, 499–503 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Mathur, S., Bulchandani, N., Parihar, S. & Shekhawat, G. S. Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int. J. Pharmacol. 13, 916–928 (2017).Article 
CAS 

Google Scholar 
Zhuang, Z. et al. Ligand‐enabled β‐C(sp3)–H lactamization of tosyl‐protected aliphatic amides using a practical oxidant. Angew. Chem. Int. Ed. 134, e202207354 (2022).Article 

Google Scholar 
Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. 2-Azetidinone—a new profile of various pharmacological activities. Eur. J. Med. Chem. 45, 5541–5560 (2010).Article 
CAS 
PubMed 

Google Scholar 
Decuyper, L. et al. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev. 38, 426–503 (2018).Article 
CAS 
PubMed 

Google Scholar 
Pierrat, O. A. et al. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem. Biol. 6, 325–335 (2011).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles