Overcoming limitations in non-activated alkene cross-coupling with nickel catalysis and anionic ligands

Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford Univ. Press, 2012).Coppola, G. A., Pillitteri, S., Van der Eycken, E. V., You, S.-L. & Sharma, U. K. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem. Soc. Rev. 51, 2313–2382 (2022).Article 
CAS 
PubMed 

Google Scholar 
Bostrom, J., Brown, D. G., Young, R. J. & Keseru, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).Article 
PubMed 

Google Scholar 
Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).Article 
CAS 

Google Scholar 
Wilson, M. R. & Taylor, R. E. Strained alkenes in natural product synthesis. Angew. Chem. Int. Ed. 52, 4078–4087 (2013).Article 
CAS 

Google Scholar 
Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis (Univ. Science Books, 2010).Johansson Seechurn, C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).Article 
CAS 

Google Scholar 
Ertl, P. & Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258–1263 (2019).Article 
CAS 
PubMed 

Google Scholar 
Zabolotna, Y. et al. A close-up look at the chemical space of commercially available building blocks for medicinal chemistry. J. Chem. Inf. Model. 62, 2171–2185 (2022).Article 
CAS 
PubMed 

Google Scholar 
Campbell, M. W., Yuan, M., Polites, V. C., Gutierrez, O. & Molander, G. A. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qian, D., Bera, S. & Hu, X. Chiral alkyl amine synthesis via catalytic enantioselective hydroalkylation of enecarbamates. J. Am. Chem. Soc. 143, 1959–1967 (2021).Article 
CAS 
PubMed 

Google Scholar 
Alvarez, S. Coordinating ability of anions, solvents, amino acids, and gases towards alkaline and alkaline-earth elements, transition metals, and lanthanides. Chem. Eur. J. 26, 4350–4377 (2020).Article 
CAS 
PubMed 

Google Scholar 
Strassfeld, D. A., Chen, C.-Y., Park, H. S., Phan, D. Q. & Yu, J.-Q. Hydrogen-bond-acceptor ligands enable distal C(sp3)–H arylation of free alcohols. Nature 622, 80–86 (2023).Article 
CAS 
PubMed 

Google Scholar 
Derosa, J., Apolinar, O., Kang, T., Tran, V. T. & Engle, K. M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 11, 4287–4296 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chu, L., Zhu, S., Tu, H.-Y. & Qing, F.-L. Recent advances in nickel-catalyzed three-component difunctionalization of unactivated alkenes. Synthesis 52, 1346–1356 (2020).Article 

Google Scholar 
Ping, Y. & Kong, W. Ni-catalyzed reductive difunctionalization of alkenes. Synthesis 52, 979–992 (2020).Article 

Google Scholar 
Derosa, J., Tran, V. T., Boulous, M. N., Chen, J. S. & Engle, K. M. Nickel-catalyzed beta,gamma-dicarbofunctionalization of alkenyl carbonyl compounds via conjunctive cross-coupling. J. Am. Chem. Soc. 139, 10657–10660 (2017).Article 
CAS 
PubMed 

Google Scholar 
Yang, T., Chen, X., Rao, W. & Koh, M. J. Broadly applicable directed catalytic reductive difunctionalization of alkenyl carbonyl compounds. Chem 6, 738–751 (2020).Article 
CAS 

Google Scholar 
Thapa, S. et al. Ni-catalysed regioselective 1,2-diarylation of unactivated olefins by stabilizing Heck intermediates as pyridylsilyl-coordinated transient metallacycles. Chem. Sci. 9, 904–909 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, S. et al. Regioselective nickel-catalyzed dicarbofunctionalization of unactivated alkenes enabled by picolinamide auxiliary. Cell Rep. Phys. Sci. 2, 100574 (2021).Article 
CAS 

Google Scholar 
Apolinar, O. et al. Sulfonamide directivity enables Ni-catalyzed 1,2-diarylation of diverse alkenyl amines. ACS Catal. 10, 14234–14239 (2020).Article 
CAS 

Google Scholar 
Basnet, P. et al. Synergistic bimetallic Ni/Ag and Ni/Cu catalysis for regioselective γ,δ-diarylation of alkenyl ketimines: addressing β-H elimination by in situ generation of cationic Ni(II) catalysts. J. Am. Chem. Soc. 140, 15586–15590 (2018).Article 
CAS 
PubMed 

Google Scholar 
Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).Article 
CAS 

Google Scholar 
Xia, Y. & Dong, G. Temporary or removable directing groups enable activation of unstrained C–C bonds. Nat. Rev. Chem. 4, 600–614 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhao, X. et al. Intermolecular selective carboacylation of alkenes via nickel-catalyzed reductive radical relay. Nat. Commun. 9, 3488 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of alkenyl carboxylates: a gateway to 1,2,3-trifunctionalized building blocks. Angew. Chem. Int. Ed. 59, 1201–1205 (2020).Article 
CAS 

Google Scholar 
Zhu, J., Wang, Q. & Wang, M. Multicomponent Reactions in Organic Synthesis (Wiley-VCH, 2015).Meijere, A. D., Bräse, S. & Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More (Wiley-VCH, 2014).McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).Article 
CAS 
PubMed 

Google Scholar 
Ogoshi, S. Nickel Catalysis in Organic Stnthesis: Methods and Reactions (Wiley-VCH, 2020).Zhang, J. X. & Shu, W. Ni-catalyzed reductive 1,2-cross-dialkylation of unactivated alkenes with two alkyl bromides. Org. Lett. 24, 3844–3849 (2022).Article 
CAS 
PubMed 

Google Scholar 
Dhungana, R. K. et al. Nickel-catalyzed regioselective alkenylarylation of γ,δ-alkenyl ketones via carbonyl coordination. Angew. Chem. Int. Ed. 60, 19092–19096 (2021).Article 
CAS 

Google Scholar 
Wang, F., Pan, S., Zhu, S. & Chu, L. Selective three-component reductive alkylalkenylation of unbiased alkenes via carbonyl-directed nickel catalysis. ACS Catal. 12, 9779–9789 (2022).Article 
CAS 

Google Scholar 
Liu, Z. et al. Palladium(0)-catalyzed directed syn-1,2-carboboration and -silylation: alkene scope, applications in dearomatization, and stereocontrol by a chiral auxiliary. Angew. Chem. Int. Ed. 58, 17068–17073 (2019).Article 
CAS 

Google Scholar 
White, D. R., Bornowski, E. C. & Wolfe, J. P. Pd-catalyzed C–C, C–N, and C–O bond-forming difunctionalization reactions of alkenes bearing tethered aryl/alkenyl triflates. Isr. J. Chem. 60, 259–267 (2020).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wu, D. et al. Alkene 1,1-difunctionalizations via organometallic-radical relay. Nat. Catal. 6, 1030–1041 (2023).Article 
CAS 

Google Scholar 
Wang, D. M. et al. Ligand-enabled Ni(II)-catalyzed hydroxylarylation of alkenes with molecular oxygen. Angew. Chem. Int. Ed. 62, e202304573 (2023).Article 
CAS 

Google Scholar 
Kang, T. et al. Nickel-catalyzed 1,2-carboamination of alkenyl alcohols. J. Am. Chem. Soc. 143, 13962–13970 (2021).Article 
CAS 
PubMed 

Google Scholar 
Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).Article 
CAS 
PubMed 

Google Scholar 
Sun, S. & Fu, J. Methyl-containing pharmaceuticals: methylation in drug design. Bioorg. Med. Chem. Lett. 28, 3283–3289 (2018).Article 
CAS 
PubMed 

Google Scholar 
Kang, T. et al. Alkene difunctionalization directed by free amines: diamine synthesis via nickel-catalyzed 1,2-carboamination. ACS Catal. 12, 3890–3896 (2022).Article 
CAS 

Google Scholar 
Lamberth, C. Agrochemical lead optimization by scaffold hopping. Pest Manag. Sci. 74, 282–292 (2018).Article 
CAS 
PubMed 

Google Scholar 
O’Malley, K. Y., Hart, C. L., Casey, S. & Downey, L. A. Methamphetamine, amphetamine, and aggression in humans: a systematic review of drug administration studies. Neurosci. Biobehav. Rev. 141, 104805 (2022).Article 
PubMed 

Google Scholar 
Sunaga, Y. et al. The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide. Eur. J. Pharmacol. 431, 119–125 (2001).Article 
CAS 
PubMed 

Google Scholar 
Malaisse, W. J. Pharmacology of the meglitinide analogs. Treat. Endocrinol. 2, 401–414 (2003).Article 
CAS 
PubMed 

Google Scholar 
Muthukrishnan, I., Sridharan, V. & Menendez, J. C. Progress in the chemistry of tetrahydroquinolines. Chem. Rev. 119, 5057–5191 (2019).Article 
CAS 
PubMed 

Google Scholar 
Fors, B. P., Watson, D. A., Biscoe, M. R. & Buchwald, S. L. A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. J. Am. Chem. Soc. 130, 13552–13554 (2008).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Jacquemond-Collet, I. et al. Antiplasmodial and cytotoxic activity of galipinine and other tetrahydroquinolines from Galipea officinalis. Planta Med. 68, 68–69 (2002).Article 
CAS 
PubMed 

Google Scholar 
Blankson, G. A., Parhi, A. K., Kaul, M., Pilch, D. S. & LaVoie, E. J. Advances in the structural studies of antibiotic potentiators against Escherichia coli. Bioorg. Med. Chem. 27, 3254–3278 (2019).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Santella, J. B. et al. From rigid cyclic templates to conformationally stabilized acyclic scaffolds. Part I: the discovery of CCR3 antagonist development candidate BMS-639623 with picomolar inhibition potency against eosinophil chemotaxis. Bioorg. Med. Chem. Lett. 18, 576–585 (2008).Article 
CAS 
PubMed 

Google Scholar 
De Lucca, G. V. et al. Discovery of CC chemokine receptor-3 (CCR3) antagonists with picomolar potency. J. Med. Chem. 48, 2194–2211 (2005).Article 
CAS 
PubMed 

Google Scholar 
Muto, K., Kumagai, T., Kakiuchi, F. & Kochi, T. Remote arylative substitution of alkenes possessing an acetoxy group via beta-acetoxy elimination. Angew. Chem. Int. Ed. 60, 24500–24504 (2021).Article 
CAS 

Google Scholar 
Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).Article 
CAS 
PubMed 

Google Scholar 
Li, Y., Wu, D., Cheng, H. G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).Article 
CAS 

Google Scholar 
Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat. Catal. 3, 951–958 (2020).Article 
CAS 

Google Scholar 
Li, Z. et al. Nickel-catalyzed regio- and enantioselective borylative coupling of terminal alkenes with alkyl halides enabled by an anionic bisoxazoline ligand. J. Am. Chem. Soc. 145, 13603–13614 (2023).Article 
CAS 
PubMed 

Google Scholar 
Tamaki, T., Nagata, M., Ohashi, M. & Ogoshi, S. Synthesis and reactivity of six-membered oxa-nickelacycles: a ring-opening reaction of cyclopropyl ketones. Chem. Eur. J. 15, 10083–10091 (2009).Article 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles