A potential DES catalyst for the fast and green synthesis of benzochromenopyrimidines and pyranopyrimidines

Abbott, A. P. et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains electronic supplementary information (ESI) available: Plot of conductivity vs. temperature for the ionic liquid. Chem. Commun. 1, 2010–2011 (2001).Article 

Google Scholar 
Abbott, A. P., Boothby, D., Capper, G., Davies, D. L. & Rasheed, R. K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004).Article 
CAS 
PubMed 

Google Scholar 
Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K. & Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 1, 70–71 (2003).Article 

Google Scholar 
Walden, P. Molecular weights and electrical conductivity of several fused salts. Bulletin Acad. Imper. Sci. 1800, 405–422 (1914).
Google Scholar 
Paiva, A. et al. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014).Article 
CAS 

Google Scholar 
Hayyan, M. et al. Are deep eutectic solvents benign or toxic?. Chemosphere 90, 2193–2195 (2013).Article 
ADS 
CAS 
PubMed 

Google Scholar 
Dai, Y., Van Spronsen, J., Witkamp, G. J., Verpoorte, R. & Choi, Y. H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 76, 2162–2173 (2013).Article 
CAS 
PubMed 

Google Scholar 
Domínguez de María, P. Recent trends in (ligno) cellulose dissolution using neoteric solvents: Switchable, distillable and bio-based ionic liquids. J. Chem. Technol. Biotechnol. 89, 11–18 (2014).Article 

Google Scholar 
Phadtare, S. B. & Shankarling, G. S. Halogenation reactions in biodegradable solvent: Efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride: Urea). Green Chem. 12, 458–462 (2010).Article 
CAS 

Google Scholar 
Sonawane, Y. A., Phadtare, S. B., Borse, B. N., Jagtap, A. R. & Shankarling, G. S. Synthesis of diphenylamine-based novel fluorescent styryl colorants by knoevenagel condensation using a conventional method, biocatalyst, and deep eutectic solvent. Org. Lett. 12, 1456–1459 (2010).Article 
CAS 
PubMed 

Google Scholar 
Ilgen, F. & König, B. Organic reactions in low melting mixtures based on carbohydrates and L-carnitine-a comparison. Green Chem. 11, 848–854 (2009).Article 
CAS 

Google Scholar 
Coulembier, O. et al. Synthesis of poly(l-lactide) and gradient copolymers from al-lactide/trimethylene carbonate eutectic melt. Chem. Sci. 3, 723–726 (2012).Article 
CAS 

Google Scholar 
Ilgen, F. et al. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem. 11, 1948–1954 (2009).Article 
CAS 

Google Scholar 
Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K. & Tambyrajah, V. Quaternary ammonium zinc-or tin-containing ionic liquids: Water insensitive, recyclable catalysts for Diels-Alder reactions. Green Chem. 4, 24–26 (2002).Article 
CAS 

Google Scholar 
Khan, M. S. et al. Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biolo-gical activities targeting neurodegenerative disorders. Bioorg. Chem. 118, 105457 (2022).Article 

Google Scholar 
Pham, P. T. et al. Rapid and simple microwave-assisted synthesis of benzoxazoles catalyzed by [cholineCl] [oxalic acid]. Catalysts 12, 1394 (2022).Article 

Google Scholar 
Alavinia, S. & Ghorbani-Vaghei, R. Magnetic Fe3O4 nanoparticles in melamine-based ternary deep eutectic solvent as a novel eco-compatible system for green synthesis of pyrido[2,3-d]pyrimidine derivatives. J. Mol. Struct. 1270, 133860 (2022).Article 
CAS 

Google Scholar 
Nguyen, V. T., Nguyen, H. T. & Tran, P. H. One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: A green method and mechanistic insight. New J. Chem. 45, 2053–2059 (2021).Article 
CAS 

Google Scholar 
Jadidi, K., Ghahremanzadeh, R. & Bazgir, A. Efficient synthesis of spiro[chromeno[2,3-d]-pyrimidine-5,3′-indoline]tetraones by a one-pot and three-component reaction. J. Comb. Chem. 11, 341–344 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zhou, D. et al. Synthesis and properties of aminopropyl nucleic acids. ChemBioChem 6, 2298–2304 (2005).Article 
CAS 
PubMed 

Google Scholar 
Sharma, P., Rane, N. & Gurram, V. K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 14, 4185–4190 (2004).Article 
CAS 
PubMed 

Google Scholar 
Fellahi, Y. et al. Synthesis and characterization of a new pyrimidine derivative: 5-[1-phenyl-2-(3-chlorophenyl)- ethyl]-2,4,6-trichloropyrimidine. Bulletin Soc. Chim. Fr. 133, 869–874 (1996).
Google Scholar 
Heber, D., Heers, C. & Ravens, U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Die Pharm. 48, 537–541 (1993).CAS 

Google Scholar 
Ding, J. H. et al. Uranyl-silicotungstate-containing hybrid building units α-SiW 9 and γ-SiW 10 with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1H)-ones. Inorg. Chem. Front. 10, 3195–3201 (2023).Article 
CAS 

Google Scholar 
Safari, J., Tavakoli, M. & Ghasemzadeh, M. A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido[2,3-d]pyrimidines catalyzed by H3PW12O40 functional-ized chitosan@Co3O4 as a novel and green catalyst. J. Org. Chem. 880, 75–82 (2019).Article 
CAS 

Google Scholar 
Hu, Q., Li, K., Chen, X., Liu, Y. & Yang, G. Polyoxometalate catalysts for the synthesis of N-hetero-cycles. Polyoxometalates 3, 9140048 (2024).Article 

Google Scholar 
Lagoja, I. M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers. 2, 1–50 (2005).Article 
CAS 
PubMed 

Google Scholar 
McCall, J., TenBrink, M. & Ursprung, R. E. New approach to triaminopyrimidine Noxide. J. Org. Chem. 40, 3304–3306 (1975).Article 
CAS 
PubMed 

Google Scholar 
Hertel, L. W., Kroin, J. S., Misner, J. W. & Tustin, J. M. Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2-deoxy-2,2’-difluoro-D-ribofuranosyl nucleosides. J. Org. Chem. 53, 2406–2409 (1988).Article 
CAS 

Google Scholar 
Anderson, G. W., Halverstadt, I. H., Miller, W. H. & Roblin, R. O. Studies in chemo-therapy. X. Antithyroid compounds. Synthesis of 5- and 6-substituted 2-thiouracils from β-oxoesters and thiourea. J. Am. Chem. Soc. 67, 2197–2200 (1945).Article 
CAS 
PubMed 

Google Scholar 
Russell, P. B. & Hitchings, G. H. Synthesis of 2-deoxy-2,2-difluoro-D-ribose and 2- deoxy-2,2’-difluoro-D-ribofuranosyl nucleosides. J. Am. Chem. Soc. 73, 3763–3570 (1951).Article 
CAS 

Google Scholar 
Lednicer, D. Strategies for Organic Drug Synthsis and Design (Wiley, 2009).
Google Scholar 
Rathee, P., Tonk, R. K., Dalal, A. & Ruhil, M. K. Synthesis and application of thiobarbituric acid derivatives as antifungal agents. Cell. Mol. Biol. 62, 141–145 (2016).
Google Scholar 
Mobinikhaledi, A. & Kalhor, M. Synthesis and biological activity of some oxo-and thioxopyrimi- dines. Int. J. Drug Dev. Res. 2, 268–272 (2010).CAS 

Google Scholar 
Mohamed, N. R., El-Saidi, M. M. T., Ali, Y. M. & Elnagdi, M. H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem. 15, 6227–6735 (2007).Article 
CAS 
PubMed 

Google Scholar 
Brahmachari, G. Green Synthetic Approaches for Biologically Relevant Heterocycles (Elsevier, 2015).Book 

Google Scholar 
Zhou, B., Liu, Q., Wang, H., Jin, H. & Liu, Y. CuI/Cu(OTf)2/DMSO system-catalyzed intra-molecular oxidative cyclization of (o-alkynyl)arylketones: Efficient synthesis of 1,4-naphthoquin- ones. Tetrahedron Lett. 75, 3815–3821 (2019).Article 
CAS 

Google Scholar 
Dar, U. A. et al. Quantum chemical approach towards the secondary amino derivatives of C(3) substituted 1,4-naphtho-quinone: Combined molecular and dft calculations. J. Mol. Struct. 1203, 127306 (2020).Article 
CAS 

Google Scholar 
Suhara, Y. et al. Synthesis of new vitamin K analogues as steroid and xenobiotic receptor (SXR) agonists: Insights into the biological role of the side chain part of vitamin K. J. Med. Chem. 54, 4918–4922 (2011).Article 
CAS 
PubMed 

Google Scholar 
Silva, T. M. et al. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorg. Med. Chem. Lett. 13, 193–196 (2005).Article 
CAS 

Google Scholar 
Mäntylä, A. et al. Synthesis, in vitro evaluation, and antileishmanial activity of water-soluble prodrugs of buparva-quone. J. Med. Chem. 47, 188–195 (2004).Article 
PubMed 

Google Scholar 
Ganapaty, S., Thomas, P. S., Karagianis, G., Waterman, P. G. & Brun, R. Antiprotozoal and cytotoxic naphthalene derivatives from diospyros assimilis. Phytochemistry 67, 1950–1956 (2006).Article 
CAS 
PubMed 

Google Scholar 
Tandon, V. K. et al. 2,3-Disubstituted-1,4-naphthoquinones,12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem. 44, 1086–1092 (2009).Article 
CAS 
PubMed 

Google Scholar 
Tandon, V. K. et al. Naphtho[2,3-b][1,4]-thiazine-5,10-diones and 3-substituted-1,4-dioxo-1,4-dihydro-naphtha-len-2-yl-thioalkano-ate derivatives: Synthesis and biological evaluation as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett. 16, 5883–5887 (2006).Article 
CAS 
PubMed 

Google Scholar 
Biot, C., Bauer, H., Schirmer, R. H. & Davioud-Charvet, E. 5-Substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. J. Med. Chem. 47, 5972–5983 (2004).Article 
CAS 
PubMed 

Google Scholar 
Duroux, L., Delmotte, F. M., Lancelin, J. M., Keravis, G. & Jay-Allemand, C. Insight into naphtho-quinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-D-glucopyranoside. Biochem. J. 333, 275–283 (1998).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Marchionatti, A. M., Picotto, G., Narvaez, C. J., Welsh, J. & de Talamoni, N. G. T. Antipro-liferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol. 113, 227–232 (2009).Article 
CAS 
PubMed 

Google Scholar 
Weissenberg, M. et al. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the Mexican bean beetle Epilachna varivestis. J. Chem. Ecol. 23, 3–18 (1997).Article 
CAS 

Google Scholar 
Reese, S. et al. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside?. Fibrogen. Tissue Repair 3, 1–8 (2010).Article 

Google Scholar 
Talcott, R. E., Smith, M. T. & Giannini, D. D. Inhibition of microsomal lipid peroxidation by naphthoquinones: Structure-activity relationships and possible mechanisms of action. Arch. Biochem. Biophys. 24, 88–94 (1985).Article 

Google Scholar 
Furuya, S. & Ohtaki, S. T. Pyrido[2,3-d]pyrimidines and their uses as anatagonists. Chem. Abst. 121, 205395 (1994).
Google Scholar 
Heber, D., Heers, C. & Ravens, U. Positive inotropic activity of 5-amino-6-cyano-1,3-dimethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrim idine-2,4-dione in cardiac muscle from guinea-pig and man. Part 6: Compounds with positive inotropic activity. Die Pharm. 48, 537–541 (1993).CAS 

Google Scholar 
Coates, W. J. Pyrimidopyrimidine derivatives. Eur. Pat. 351058. Chem. Abst. 113, 40711 (1990).
Google Scholar 
Sakuma, Y. et al. 1,10-phenanthroline derivatives. Chem. Abst. 115, 71646 (1991).
Google Scholar 
Broom, A. D., Shim, J. L. & Anderson, G. L. Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J. Org. Chem. 41, 1095–1099 (1976).Article 
CAS 
PubMed 

Google Scholar 
Jain, S., Paliwal, P. K., Babu, G. N. & Bhatewara, A. DABCO promoted one-pot synthesis of dihydro -pyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities. J. Saudi Chem. Soc. 18, 535–540 (2014).Article 
CAS 

Google Scholar 
Rezayati, S., Abbasi, Z., Nezhad, E. R., Hajinasiri, R. & Farrokhnia, A. Three-component synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by Ni2+ supported on hydroxy-apatite-core–shell-γ-Fe2O3 nanoparticles in aqueous medium. Res. Chem. Intermed. 42, 7597–7609 (2016).Article 
CAS 

Google Scholar 
Mobinikhaledi, A., Foroughifar, N. & Bodaghifard, M. A. Eco-friendly and efficient synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives in water. Inorg. Nano Metal Chem. 40, 179–185 (2010).Article 
CAS 

Google Scholar 
Yu, J. & Wang, H. Green synthesis of pyrano[2,3-d]pyrimidine derivatives in ionic liquids. Synth. Commun. 35, 3133–3140 (2005).Article 
CAS 

Google Scholar 
Mobinikhaledi, A. C. & Bodaghifard, M. A. C. Tetrabutylammonium bromide in water as a green media for the synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives. Acta Chim. Slov. 57, 931–935 (2010).CAS 
PubMed 

Google Scholar 
Mashkouri, S. & Naimi-Jamal, M. R. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with quantitative yields. Molecules 14, 474–479 (2009).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Brahmachari, G. & Das, S. L-Proline catalyzed multicomponent one-pot synthesis of gem-dihetero -arylmethane derivatives using facile grinding operation under solvent-free conditions at room temperature. RSC Adv. 4, 7380–7388 (2014).Article 
ADS 
CAS 

Google Scholar 
Rahmachari, G. & Banerjee, B. A comparison between catalyst-free and ZrOCl2⋅ 8H2O-catalyzed Strecker reactions for the rapid and solvent-free one-pot synthesis of racemic α-aminonitrile derivatives. Asian J. Org. Chem. 1, 251–258 (2012).Article 

Google Scholar 
Brahmachari, G. & Das, S. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett. 53, 1479–1484 (2012).Article 
CAS 

Google Scholar 
Brahmachari, G. & Laskar, S. A very simple and highly efficient procedure for N-formylation of primary and secondary amines at room temperature under solvent-free conditions. Tetrahedron Lett. 51, 2319–2322 (2010).Article 
CAS 

Google Scholar 
Chen, W. et al. Tailoring hydro-phobic deep eutectic solvent for selective lithium recovery from the mother liquor of Li2CO3. Chem. Eng. J. 420, 127648 (2021).Article 
CAS 

Google Scholar 
Wang, H., Jing, Y., Wang, X., Yao, Y. & Jia, Y. Ionic liquid analogous formed from magnesium chloride hexahydrate and its physico-chemical properties. J. Mol. Liq. 163, 77–82 (2011).Article 
CAS 

Google Scholar 
Brahmachari, G. & Nayek, N. Catalyst-free one-pot three-component synthesis of diversely substituted 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H) -triones under ambient conditions. ACS Omega 2, 5025–5035 (2017).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Saei Dehkordi, S. S., Albadi, J., Jafari, A. A. & Samimi, H. A. Boric acid/pentaerythritol as a green and reusable catalytic system for the synthesis of mono-and bispyrano[2,3-d]pyrimidinone derivatives in water. Polycycl. Aromat. Compd. 43, 1–12 (2022).
Google Scholar 
Nesaragi, A. R. et al. WELPSA: A natural catalyst of alkali and alkaline earth metals for the facile synthesis of tetrahydrobenzo[b]pyrans and pyrano[2,3-d]pyrimidinones as inhibitors of SARS-CoV-2. Appl. Organomet. Chem. 36, e6469 (2022).Article 
CAS 
PubMed 

Google Scholar 
Mohamadpour, F. Catalyst-free synthesis of pyrano[2,3-d]pyrimidine scaffolds via Knoeve-nagel-Michael cyclocondensation using PEG-400 as a green promoting medium. Org. Prep. Proced. Int. 52, 503–509 (2020).Article 
CAS 

Google Scholar 
Sajjadifar, S., Zolfigol, M. A. & Tami, F. Application of 1-methyl imidazole-based ionic liquid-stabilized silica-coated Fe3O4 as a novel modified magnetic nanocatalyst for the synthesis of pyrano[2,3-d]pyrimidines. J. Chin. Chem. Soc. 66, 307–315 (2019).Article 
CAS 

Google Scholar 
Dangolani, S. K., Panahi, F., Nourisefat, M. & Khalafi-nezhad, A. 4-Dialkylaminopyridine modified magnetic nanoparticles: As an efficient nano-organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives in water. RSC Adv. 6, 92316–92324 (2016).Article 
ADS 
CAS 

Google Scholar 
Mohammadi, R., Esmati, S., Gholamhosseini-Nazari, M. & Teimuri-Mofrad, R. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. J. Mol. Liq. 275, 523–534 (2019).Article 
CAS 

Google Scholar 
Balalaie, S., Abdolmohammadi, S., Bijanzadeh, H. R. & Amani, A. M. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]-pyri-midinone derivatives in aqueous media. Mol. Diver. 12, 85–91 (2008).Article 
CAS 

Google Scholar 
Bararjanian, M., Balalaie, S., Movassag, B. & Amani, A. M. One-pot synthesis of pyrano [2,3-d]- pyrimidinone derivatives catalyzed by L-proline in aqueous media. J. Iran. Chem. Soc. 6, 436–442 (2009).Article 
CAS 

Google Scholar 
Mobinikhaledi, A. & Fard, M. B. Tetrabutylammonium bromide in water as a green media for the synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyrans. Acta Chim. Slov. 57, 931–935 (2010).CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles