Transition from Kwon [4+2]- to [3+2]-cycloaddition enabled by AgF-assisted phosphine catalysis

Horner, L., Jurgeleit, W. & Klüpfel, K. Zur anionotropen polymerisationsauslosung bei olefinen. Justus Liebigs Ann. Chem. 591, 108–117 (1955).Article 
CAS 

Google Scholar 
Khong, S., Venkatesh, T. & Kwon, O. Nucleophilic phosphine catalysis: the untold story. Asian J. Org. Chem. 10, 2699–2708 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Ni, H., Chan, W.-L. & Lu, Y. Phosphine-catalyzed asymmetric organic reactions. Chem. Rev. 118, 9344–9411 (2018).Article 
CAS 
PubMed 

Google Scholar 
Wang, S.-X., Han, X., Zhong, F., Wang, Y. & Lu, Y. Novel amino acid based bifunctional chiral phosphines. Synlett 19, 2766–2778 (2011).Xie, C., Smaligo, A. J., Song, X.-R. & Kwon, O. Phosphorus-based catalysis. ACS Cent. Sci. 7, 536–558 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Chen, J., Ni, S. & Ma, S. Highly regioselective synthesis of 2,3,5-trisubstituted furans via phosphine-catalyzed ring-opening cycloisomerization reactions of cyclopropenyl dicarboxylates. Synlett 931–934 (2011).Wu, J. et al. Phosphine-catalyzed activation of vinylcyclopropanes: rearrangement of vinylcyclopropylketones to cycloheptenones. Angew. Chem. Int. Ed. 57, 6284–6288 (2018).Article 
CAS 

Google Scholar 
He, X. et al. Phosphine-catalyzed activation of alkylidenecyclopropanes: rearrangement to form polysubstituted furans and dienones. Angew. Chem. Int. Ed. 58, 10698–10702 (2019).Article 
CAS 

Google Scholar 
Zhang, F. et al. Phosphine-catalyzed enantioselective (3+2) annulation of vinylcyclopropanes with imines for the synthesis of chiral pyrrolidines. Angew. Chem. Int. Ed. 61, e202203212 (2022).Article 
ADS 
CAS 

Google Scholar 
Dai, X., Zhang, F., Dai, L. & Lu, Y. Asymmetric dearomatization of electron-deficient heteroarenes by a phosphine-catalyzed [3+2] annulation with vinylcyclopropanes. CCS Chem. 5, 2023–2032 (2023).Article 
CAS 

Google Scholar 
Shih, H. W. & Prescher, J. A. A bioorthogonal ligation of cyclopropenones mediated by triarylphosphines. J. Am. Chem. Soc. 137, 10036–10039 (2015).Article 
CAS 
PubMed 

Google Scholar 
Zhang, J., Hu, Z., Qin, L., Gao, Y. & Hu, X.-Q. Strain-release-driven phosphine and rhodium catalysis: facile synthesis of unsymmetrical tetrasubstituted alkenes. ACS Catal. 15, 10425–10434 (2023).Article 

Google Scholar 
He, X. et al. Phosphine-catalyzed activation of cyclopropenones: a versatile C3 synthon for (3+2) annulations with unsaturated electrophiles. Chem. Sci. 13, 12769–12775 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Cao, Z.-H., Wang, Y.-H., Kalita, S. J., Schneider, U. & Huang, Y.-Y. Phosphine-catalyzed [4+1] cycloadditions of allenes with methyl ketimines, enamines, and a primary amine. Angew. Chem. Int. Ed. 59, 1884–1890 (2019).Article 

Google Scholar 
Feng, J. & Huang, Y. Phosphine-catalyzed remote 1,7-addition for synthesis of diene carboxylates. ACS Catal. 10, 3541–3547 (2020).Article 
CAS 

Google Scholar 
Wei, Y. & Shi, M. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita−Baylis−Hillman and related reactions. Acc. Chem. Res. 43, 1005–1018 (2010).Article 
CAS 
PubMed 

Google Scholar 
Xie, P. & Huang, Y. Domino cyclization initiated by Cross-Rauhut–Currier reactions. Eur. J. Org. Chem. 2013, 6213–6226 (2013).Trost, B. M. & Li, C.-J. Novel “umpolung” in C-C bond formation catalyzed by triphenylphosphine. J. Am. Chem. Soc. 116, 3167–3168 (1994).Article 
CAS 

Google Scholar 
Zhang, C. & Lu, X. Umpolung addition reaction of nucleophiles to 2,3-butadienoates catalyzed by a phosphine. Synlett 1995, 645–646 (1995).Zhang, C. & Lu, X. Phosphine-catalyzed cycloaddition of 2,3-butadienoates or 2-butynoates with electron-deficient olefins. A novel [3 + 2] annulation approach to cyclopentenes. J. Org. Chem. 60, 2906–2908 (1995).Article 
CAS 

Google Scholar 
Xu, Z. & Lu, X. Phosphine-catalyzed [3+2] cycloaddition reactions of substituted 2-alkynoates or 2,3-allenoates with electron-deficient olefins and imines. Tetrahedron Lett. 40, 549–552 (1999).Article 
CAS 

Google Scholar 
Zhu, X.-F., Lan, J. & Kwon, O. An expedient phosphine-catalyzed [4 + 2] annulation: synthesis of highly functionalized tetrahydropyridines. J. Am. Chem. Soc. 125, 4716–4717 (2003).Article 
CAS 
PubMed 

Google Scholar 
Tran, Y. S. & Kwon, O. Phosphine-catalyzed [4 + 2] annulation: synthesis of cyclohexenes. J. Am. Chem. Soc. 129, 12632–12633 (2007).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Wurz, R. P. & Fu, G. C. Catalytic asymmetric synthesis of piperidine derivatives through the [4 + 2] annulation of imines with allenes. J. Am. Chem. Soc. 127, 12234–1235 (2005).Article 
CAS 
PubMed 

Google Scholar 
Zhong, F., Han, X., Wang, Y. & Lu, Y. Highly enantioselective [4+ 2] annulations catalyzed by amino acid-based phosphines: synthesisof functionalized cyclohexenes and 3-spirocyclohexene-2-oxindoles. Chem. Sci. 3, 1231–1234 (2012).Article 
CAS 

Google Scholar 
Du, Y., Lu, X. & Zhang, C. A catalytic carbon–phosphorus ylide reaction: phosphane-catalyzed annulation of allylic compounds with electron-deficient alkenes. Angew. Chem. Int. Ed. 42, 1035–1037 (2003).Article 
ADS 
CAS 

Google Scholar 
Choe, Y. & Lee, P. H. Stereoselective DABCO-catalyzed synthesis of (E)-α-ethynyl-α,β-unsaturated esters from allenyl acetates. Org. Lett. 11, 1445–1448 (2009).Article 
CAS 
PubMed 

Google Scholar 
Zhang, Q., Yang, L. & Tong, X. 2-(Acetoxymethyl)buta-2,3-dienoate, a versatile 1,4-biselectrophile for phosphine-catalyzed (4 + n) annulations with 1,n-nisnucleophiles (n = 1, 2). J. Am. Chem. Soc. 132, 2550–2551 (2010).Article 
CAS 
PubMed 

Google Scholar 
Han, X. et al. Asymmetric synthesis of spiropyrazolones through phosphine-catalyzed [4 + 1] annulation. Angew. Chem. Int. Ed. 53, 5643–5647 (2014).Article 
CAS 

Google Scholar 
Kramer, S. & Fu, G. C. Use of a new spirophosphine to achieve catalytic enantioselective [4 + 1] annulations of amines with allenes to generate dihydropyrroles. J. Am. Chem. Soc. 137, 3803–3806 (2015).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hu, J., Wei, Y. & Tong, X. Phosphine-catalyzed [3 + 2] annulations of γ-functionalized butynoates and 1C,3O-bisnucleophiles: highly selective reagent-controlled pathways to polysubstituted furans. Org. Lett. 13, 3068–3071 (2011).Article 
CAS 
PubMed 

Google Scholar 
Gu, Y., Hu, P., Ni, C. & Tong, X. Phosphine-catalyzed addition/cycloaddition domino reactions of β’-acetoxy allenoate: highly stereoselective access to 2-oxabicyclo[3.3.1]nonane and cyclopenta[a]pyrrolizine. J. Am. Chem. Soc. 137, 6400–6406 (2015).Article 
CAS 
PubMed 

Google Scholar 
Chen, X. et al. Access to aryl-naphthaquinone atropisomers by phosphine-catalyzed atroposelective (4+2) annulations of δ-acetoxy allenoates with 2-hydroxyquinone derivatives. Angew. Chem. Int. Ed. 58, 15334–15338 (2019).Article 
ADS 
CAS 

Google Scholar 
Zhu, Y., Wang, D. & Huang, Y. Phosphine sequentially catalyzed domino 1,6-addition/annulation: access to functionalized chromans and tetrahydroquinolines with an ethynyl-substituted all-carbon quaternary center. Org. Lett. 21, 908–912 (2019).Article 
CAS 
PubMed 

Google Scholar 
Caputo, C. B., Winkelhaus, D., Dobrovetsky, R., Hounjet, L. J. & Stephan, D. W. Synthesis and Lewis acidity of fluorophosphonium cations. Dalton Trans. 44, 12256–12264 (2015).Article 
CAS 
PubMed 

Google Scholar 
Greb, L. Lewis superacids: classifications, candidates, and applications. Chem. Eur. J. 24, 17881–17896 (2018).Article 
CAS 
PubMed 

Google Scholar 
Haartz, J. C. & McDaniel, D. H. Fluoride ion affinity of some Lewis acids. J. Am. Chem. Soc. 95, 8562–8565 (1973).Article 
CAS 

Google Scholar 
Tolman, C. A. Phosphorus ligand exchange equilibriums on zerovalent nickel. Dominant role for steric effects. J. Am. Chem. Soc. 92, 2956–2965 (1970).Article 
CAS 

Google Scholar 
Marti, C. & Carreira, E. M. Total synthesis of (−)-spirotryprostatin B: synthesis and related studies. J. Am. Chem. Soc. 127, 11505–11515 (2005).Article 
CAS 
PubMed 

Google Scholar 
Ooi, T., Uematsu, Y., Fujimoto, J., Fukumoto, K. & Maruoka, K. Advantage of in situ generation of N-arylsulfonyl imines from a-amide sulfones in the phase-transfer-catalyzed asymmetric Strecker reaction. Tetrahedron Lett. 48, 1337–1340 (2007).Article 
CAS 

Google Scholar 
Wang, Z.-Y., Freas, D. J. & Fu, G. C. Phosphine catalysis of the fluorination of unactivated tertiary alkyl chlorides under mild and convenient conditions. J. Am. Chem. Soc. 145, 25093–25097 (2024).Article 

Google Scholar 
Fujiwara, Y. & Fu, C. G. Application of a new chiral phosphepine to the catalytic asymmetric synthesis of highly functionalized cyclopentenes that bear an array of heteroatom-substituted quaternary stereocenters. J. Am. Chem. Soc. 133, 12293–12297 (2011).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Slattery, J. M. & Hussein, S. How Lewis acidic is your cation? Putting phosphonium ions on the fluoride ion affinity scale. Dalton Trans. 41, 1808–1815 (2012).Article 
CAS 
PubMed 

Google Scholar 
Fujimoto, H., Kodama, T., Yamanaka, M. & Tobisu, M. Phosphine-catalyzed intermolecular acylfluorination of alkynes via a P(V.) intermediate. J. Am. Chem. Soc. 142, 17323–17328 (2020).Article 
CAS 
PubMed 

Google Scholar 
Fujimoto, H., Kusano, M., Kodama, T. & Tobisu, M. Three-component coupling of acyl fluorides, silyl enol ethers, and alkynes by P(III)/P(V) catalysis. J. Am. Chem. Soc. 143, 18394–18399 (2021).Article 
CAS 
PubMed 

Google Scholar 
Fujimoto, H., Yamamura, S., Kusano, M. & Tobisu, M. 1,2-Diacylation of alkynes using acyl fluorides and acylsilanes by P(III)/P(V) catalysis. Org. Lett. 25, 336–340 (2023).Article 
CAS 
PubMed 

Google Scholar 
Chulsky, K., Malahov, I., Bawari, D. & Dobrovetsky, R. Metallomimetic chemistry of a cationic, geometrically constrained phosphine in the catalytic hydrodefluorination and amination of Ar–F bonds. J. Am. Chem. Soc. 145, 3786–3794 (2023).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Hoffmann, R., Howell, J. M. & Muetterties, E. L. Molecular orbital theory of pentacoordinate phosphorus. J. Am. Chem. Soc. 94, 3047–3058 (1972).Article 
CAS 

Google Scholar 
Couzijn, E. P. A., Slootweg, J. C., Ehlers, A. W. & Lammertsma, K. Stereomutation of pentavalent compounds: validating the Berry pseudorotation, redressing Ugi’s turnstile rotation, and revealing the two- and three-arm turnstiles. J. Am. Chem. Soc. 132, 18127–18140 (2010).Article 
CAS 
PubMed 

Google Scholar 
lvarez-Corral, M. A., Munoz-Dorado, M. & Rodriguez-Garcia, I. Silver-mediated synthesis of heterocycles. Chem. Rev. 108, 3174–3198 (2008).Article 

Google Scholar 
Weibel, J.-M., Blanc, A. & Pale, P. Ag-mediated reactions: coupling and heterocyclization reactions. Chem. Rev. 108, 3149–3173 (2008).Article 
CAS 
PubMed 

Google Scholar 
Moon, H. W. & Cornella, J. Bismuth redox catalysis: an emerging main-group platform for organic synthesis. ACS Catal. 12, 1382–1393 (2022).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Lipshultz, J. M., Li, G. & Radosevich, A. T. Main group redox catalysis of organopnictogens: vertical periodic trends and emerging opportunities in group 15. J. Am. Chem. Soc. 143, 1699–1721 (2021).Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 
Melen, R. L. Frontiers in molecular p-block chemistry: from structure to reactivity. Science 363, 479–484 (2019).Article 
ADS 
CAS 
PubMed 

Google Scholar 

Hot Topics

Related Articles